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Hyperspectral Remote Sensing System
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Wavelength Regions for Hyperspectral Imaging
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400-1000 970- 2500 nm

Characteristics of hyperspectral
remote sensing systems:

(1) Passive, relies on the Sun as the
source of radiation.

(2) 400nm - 2500nm for most
commercial hyperspectral sensors.

(3) Various spectral channels

(4) Trade-off between spectral
resolution and spatial resolution
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Spectral Characteristics of Energy Sources and Sensing Systems
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RGB sensors vs. Multi/Hyperspectral

Sensors RGB sensors have only
RGB Multispectral Hyperspectral three visible channels (i.e.,
A ] ! R, G, B)
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Trade-off Between Spectral Resolution and Spatial Resolution

Is it possible for 15cm Maxar camera to
have hundreds of hyperspectral channels?
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Mixed Pixel in Hyperspectral Remote Sensing Image

Data cube

W\

Sfcclra v

Water Tree Spectra w

e

Hyperspectral -
imaging Spectra u

Target

Mixed Pixel

Observed Spectra

s=F(u, v, w)

[llustration of mixed pixel generation in hyperspectral remote sensing (from Zhang et al. 2014)



Hyperspectral Imaging Approaches

A

Point scan Line scan Wavelength scan Snapshot
Spectral res: high Spectral res: high Spectral res: low - high
Speed: low Speed: medium Speed: medium / high

(A) Point scan. (B) Line scan (i.e. "pushbroom”). (C) Wavelength scan. (D) Snapshot.
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https://www.spiedigitallibrary.org/journals/optical-engineering/volume-52/issue-09/090901/Review-of-snapshot-spectral-imaging-technologies/10.1117/1.OE.52.9.090901.full?SSO=1
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-52/issue-09/090901/Review-of-snapshot-spectral-imaging-technologies/10.1117/1.OE.52.9.090901.full?SSO=1
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What do we want from hyperspectral image (HSI)?

Hype rSpeCtraI EnVI ronme ntal -- informative features extraction for visualization
M 0 nl'[OI‘I ng An aly“CS -- subtle class labels, e.g., different crop types mapping,

diseased and healthy crops discrimination;

v Spaceborne -- biochemical parameters, e.g., chlorophyll content and
" ek water contentin leaves;

Swath width of
imaging sensor Carth - , e.g.,
surface § Soll i .
8 -- geochemical parameters, e.g., soil heavy metal
; 3 m concentration, soil moisture;
Wavelength
Difficulties:
g Water
3 -- the large data volume of hyperspectral image (HSI);
=
o
Wavelongth -- the innate high-dimensionality of HSI;
Each pixel contains -
| thatlausodtatdontty & B -- the spatial-spectral heterogeneity in HSI;
f the materials presentin = 3
the pixel by their ) . o
Feectasios 2| - the limited training samples;

Spectral images wwgv:lo;gthi .
faken simultansously - the noise effect in HSI, and many other factors;

Image Source http://www.markelowitz.com . . .
How to use Advanced Intelligent Machine Learning and

Statistical Approaches to improve environmental variable
extraction?




Intelligent Hyperspectral Environmental monitoring
analvtics

NSERC hyperspectral images (HSI)

CRSNG : Address noise, heterngene]ty,'
i high-dimensionality, Address specific :

: limited ground truth /\ Enwmnmemal applicztions :

SIKYWATCH <

Delivenng Intelbgence From Space
O ‘ ‘ ! Cutting-edge task-specific methods, including; | Automatic pipeline for data -> information i
# H E : i
i denoising i ! UAV hyperspectral mapping of bio-parameters |
Whare Next Happens : feature extraction | ! UAV hyperspectral mapping of soil parameters i
! visualization, i 1 Satellite hyperspectral mapping of bio-parameters '
' classification & regression, ;1 Satellite hyperspectral mapping of mineral content

i spectral unmixing,
i physical model inversion

NSFC



Crop classification Using Deep Learning and Spatial Modeling Aviris

Hyperspectral Image with 224 Channels -- North-western Indiana, two-thirds agriculture, and one-third
forest or other natural perennial vegetation

Altaifa Bloats
Coam-motill [ seybean-motin
Coam-minkill Saybean-mintill
Mlcem Bl seybaan-clean
Grass-pasiur Whieat
Pl crass-trees Wood
[ Grasa-pant s [Plevidings-GravsTrees-Drives
P Hay-windrowed Bl stone-Steel. Towers

- Spatial Modeling and Deep neural network classifier achieved 97.45%
overall accuracy using limited training samples;




Classes are not separable
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Raw noisy hyperspectral
band i image

Denoised hyperspectral band

ng of Hyperspectral Crop Sceng”

Noisy spectra
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Pixel-MCS (8.5dB) Spectral-MCS (10.9dB) Spatial-MCS (11.1dB) SS-MCS (13.5dB)

Denoised spectra
Fig. 20. Denoising results achieved by different methods, on band 219 of Indian Pines image. The SN I values are shown in parenthesis. The proposed SS-MCS
method increases the SN R of noisy image dramatically by 5.3 dB. Morcover, it recovers the scene signal from intense noise pollution, Using information in
adjacent channels, spectral-MCS also highlights the signals, but also preserves large amount of noise.
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UAV Hyperspectral Canopy Monitoring

Time: June 2017
Study area : 1000m?
Flight altitude: 50m
Flight speed: 2m/s
Forward overlap: 80%
Side overlap: 45%

Volume : 3590 images (13G) /-/ T R W
Flight track

Number of leaf samples: 30 ‘/
(cab- pg/cm2, cw-g/cm2) 4

S185
Data qualit
Wavelength range 450 nm-950 nm(1000nm) I
Detector Silicon Sony ICX285
Spectral resolution (FWHM®@1{=23mm) 8 nm (@532 nm)
Spectral sampling 4 nm (125 channels) (138)
Spectral sampling (physical) 1,05 nm/Pix@450 nm;

4,54 nm/Pix@650 nm;
8,13 nm/Pix@900 nm

Wavelength accuracy AA +2,5nm / 24,5nm
@ 532nm / 808nm@{=23mm

Spatial resolution 1000*1000 Pixel
SNR @ 25ms 58dB

= —

Mosaiced image



; L
.'y‘
-0
Z o
;
“
' "‘
i %
)
N":b 0
34 He.
er AR
LT ed 3
"
» oS -

Chlorophyll content (R4=0.87)
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Vineyard mapping using Headwall Pushbroom
Camera

True-color RGB Composite Image
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UAYV Hyperspectral Imaging for Soil Iron Concentration Mapping

Hyperspectral camera: Cubert UHD 185-Firefly
Band range: 125 bands from 450 to 950 nm
Fight height: 178m

Images number: _ %ﬁ :
Image size 1000 x 1000 pixels )
Spatial resolution: 0.05m

Data volume: 241 GB e
# GT samples (me/kg): 69 -

W 0 I
. — —
Tangshang Clty
g $
I / ”

Data quality Legend

Wavelongth rango 450 nm-950 nmy 1000nm) ] 0 Ql *
: : L an'an Count

Detecior Silcon Sony ICX285 — 1 =4 T h i Yy
Spectral resolution (FWHM@1=23mm) 8 nm (@532 nm) angshan City
Spectral sampling 4 nm (125 channels) (138)
Spectral sampling (physscal) 1,05 nenPox® 450 nm

4 54 neVPix @850 nm
8,13 P& 900 nm
Wavelength accuracy A\ £2,50m / 24 50m
3 532nm / 808nm @ t=23mm
Spatial resolution 1000° 1000 Pxel

SNR @ 5848




Hyperspectral soil mapping
pipeline

Recalmation area

Fine mine area

Original
HSIs

x10°

3y |

:"’mc" = Optimal &
thematic model
map

44 1
Feature Train Test p
combinations Max Min Median  Mean Max Mim Median Mean [T T
SE I 04159 07768 03711 05957 0 06332 06179 13 %, e
SBaPCA 00098 05364 07686 0773 09952 0 06489 05478 i ;
SB+MNF 09964 03809 07044 07118 09978 00032 06734 05964 )

SE+PCA+MNF 09987 04903 07357 07517 05990 0.00E6 07070 0.6182

R2 statistics obtained by different feature input using -
the PLSR model
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Hyperspectral Image (HSI) Classification

Unknown

Alfalfa
Corn-notill
Corm-min

Corn
Crass/Pasture
Crass/Trees
Grass/Pasture-mowed
Hay-wind rowed
Qals
Saybeans-notill
Soybeans-min
Soybeans-clean
Wheet

Woads

RGB image Y Classification map X

For each pixel in Y, we need to estimate its “identity”, i.e., the semantic class membership
Key issues and challenges:

(1) different crops types have similar spectral pattern; weak spectral signature information->
requires efficient feature extraction methods;

(2) Which model is most suitable for this image? model selection;

(3) weak edges among classes; how to efficiently preserve edges in classification map?



Problem formulation

Forward model:

Y =1f(X)

(1) Y: Remote sensing image, e.g., SAR, multispectral, hyperspectral images
(2) X: The “identity” or “class labels” of each pixel in Y

(3) f(.): The forward model, which is unknown;

True inverse function:
X =t(Y) =f1(Y)
where t(.) is the true inverse function thatis unknown, because the forward model is unknown:

Data-driven approximated inverse function:

X=g(Y)

Note that g(.) is only an approximation to the true inverse function t(.),
Based on {(X,Y)) | j=1,2,...,n}, we build the following objective function:
J(0) = 211X-g(Y)|

0 = min J(6) Model selection issue: how to achieve o(.) that approximate t(.) as close as possible?



Mixed Pixel in Hyperspectral Remote Sensing Image

Data cube

W\

Sfcclra v

Water Tree Spectra w

e

Hyperspectral -
imaging Spectra u

Target

Mixed Pixel

Observed Spectra

s=F(u, v, w)

[llustration of mixed pixel generation in hyperspectral remote sensing (from Zhang et al. 2014)



Spectral Unmixing

Incident solar Within a 30m-by-30m IFOV, there are multiple land cover classes, i.e.,
radisnce water, soil and grass.

The spatial heterogeneity of land cover classes leads to mixed pixels in HSI.

Yi = 0.2 x Awater T+ 0.7 x a’g?‘ass -+ 0.1 xa

pectral unmixingaims to quantify the
ithin-pixel spatial heterogeneity by
decomposing the mixed pixel into pure
spectra (i.e., endmembers) and their
fractional proportions (i.e., abundances).

Spectral unmixing is essential for
Discovering patterns using a limited
number of abundances maps

Reflectance (percent)

Wavelength (micrometers)



Spectral Unmixing

e Spectral unmixing aims to disentangle the mixed pixels y; in
hyperspectral image (HSI), and estimate both the endmembers a, and

the abundance x;, simultaneously.
K

Y; = Zakxik"'ni (fO‘T‘ 1 =1,2, ?N)

k=1
The ith mixed pixel
P The noise effect

The kth endmember ‘ The abundance of kth endmember

e Spectral unmixing is fundamental for quantitative information
retrieval from HSI, and is able to support various other HSI processing
tasks, such as denoising, super-resolution, subpixel mapping and
classification.



Classification vs. Spectral Unmixing

(1) Classification

e Forward model: YESRICOIRNECR{ONeoE Nl N4 .

e Trueinverse function: X =t(Y) =f1(Y), where the true inverse function t(.) is unknown

e Approximated inverse function by supervised learning: X =g(Y)

Approximate t(.) using raining pairs: {(X;,Y)) | j=1,2,...,n}, - |, ----> 6 =min J(6
(1) Spectral Unmixing
e Forward model: YEERRAE Y&, where f(.) is the linear spectral mixture model
e Trueinverse function: X =t(Y) =f1(Y)=A1(Y-N), however, Ais generally not invertible (low rank)

e Estimate X, using constrained linear optimization:

Given (X,Y)),



(1) Direct (2) LUT approach (3) Numerical (4) Simulation & ML (5) ML (6) DL
inversion Approach

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form no no Yes, estimate X no no no

known, but with some unknown and U together

parameters U

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, no yes? Yes? Use (X,Y) to yes? Yes, use both Yes, use both

can accommodate both? estimate parameters simulated and observed simulated and observed

in f(.) data data
Can use prior information? e.g., no Yes? Use value prior for Yes? Use value prior of Yes, Use value prior in sampling Yes, spatial prior in Yes, similar to ML
spatial prior and value prior sampling X in Bayesian estimation and spatial prior in Random fields Random field
approaches

Advantages Knowledge | Knowledge-driven; Knowledge-driven; Knowledge-driven; Data-driven; Strong modeling
-driven; Intuitive, easy, estimate U; flexible; continuous fitting; flexible; Classic; capability;
Simple, discrete fitting; Efficient for simple good inter/extrapolation; automatic feature
easy f(.) in convex faster than LUT learning;

problems

Disadvantages Unrealistic; | Sensitive to Rely on efficiency Overfitting and underfitting | Weak modeling Overfitting and
rely on accuracy of f(.), of nonlinear solver; risk to simulated data; capability; Rely on underfitting; Black-
simple f(.) similarity metrics, Slow; Local difficult model selection; “good” engineered box;

sampling density optimum; Sensitive to accuracy of f(.), features; Black-box;

and range; slow if
LUT is large; bad for
extrapolation;

similarity metrics, sampling
density and range;

Overfitting, underfitting;
Feature and model
selection is difficult and
slow




(3) Numerical Approaches

If the radiative transfer model f(.) is known, and we have an remote sensing observation Y, we can use the numerical
approach to estimate the associated X.

Forward model: Y =1(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and un-invertible.
Based on some observations {Y}, we can build an objective function:

J(X) = Y-f(X)

X =min J(X)

We try to find X that through f(.) can generate output whose value is very close to the value of Y.

Because the forward model f(.) contains knowledge and physical rules, f(.) is usually called physical model.



Spectral Unmixing -- What if both A and S are unknown

Forward model: Y =f(X)=AX+N, where f(.) is the linear spectral mixture model
True inverse function: X =t(Y) =f1(Y)=A1(Y-N), however, A is generally not invertible (low rank)
e Only X; is unknown, estimate X; using constrained linear optimization:
X;=min J(X;) , where J(X;) = ||Y;-AXi||
° Both A and X; are unknown, estimate X; and A iteratively using Expectation-maximization (EM) algorithm:
E-step: estimate X; based on A and Y; :
X;=min J(X;) , where J(X;) = ||Y;-AX|||
M-step: estimate A based on X; and Y; :
A = min J(A) , where J(A) = ||Y-AX||

Repeat E-step and M-step until convergence;
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Bayesian Hybrid Deep Learning for Hyperspectral Unmixing

Fang, Yuan, Yuxian Wang, Linlin Xu, Rongming Zhuo, Alexander Wong, and David A. Clausi. "BCUN: Bayesian fully convolutional

neural network for hyperspectral spectral unmixing." IEEE Transactions on Geoscience and Remote Sensing 60 (2022): 1-14.

\

Hyperspectral Image Classification



Linear spectral mixture model (LSMM)

Hyperspectral Incident solar
sensor irradiance
IFOV 2

B water 0.2

[ ] soil 0.1

K . B Grass o
&T; = E ars;, +n,

L—1

Grass

Soil

.sf}U:ZS':_';:]
I-

Reflectance (percent)
o

- AQ IL? =
X: observation matrix of HSI o . = , : ; ;

A: endmember matrix
S: abundance matrix x = 0.2 X ayater + 0.1 X @spi1 + 0.7 X @grass

Wavelength (micrometers)




How spectral unmixing helps other tasks?

< HSI denoising: achieved by reconstructing the “clean” pixel using
estimated endmembers and abundances:

K
T; = E n,;l.ﬁf-_‘
L—1

HSI classification: s; can be treated as the soft label of pixels in HSI

HSI feature extraction: achieved by estimating s; from x;

Environmental monitoring: Knowing the endmember-abundance
pattern in HSI facilitates the qualification of the ground environment
from HSI (such as fire burn severity, deforestation level and soil
contamination).

» #
420

*s

*



Key issues of spectral unmixing

K
€r; = E a,k:af‘ +n,
I-—1

(1) The characterization of noise n in HSI
--- Over or under characterization of noise n cause inaccurate {s;} and {a,}.

(2) The development of effective constraint on endmembers {a,}
--- Effective constraints on {a,} serve as guidance and regulations during the estimation process.

(3) The modeling of abundance {s;} in HSI
--- Accurate regulating and estimating of {s;} relies on well leveraging the spatial contexture

information.

(4) The design of fast and efficient model optimization techniques



Inverse problem optimization

Forward model: Ti = a8 + N, X = {w)li=1.2.... M} € RP*M
Pk e A={alk=1,.. K} eRP*K
Inverse model: {ai,s;} =& ! (a;) S = {sili =1....M} € RK*M
ChECkEtg:T%?fceEdne(sﬁ) Unknowns are mu.ch more than knowns.
0 UNIQUENESS (3¢) [1 Infinite solutions
0 ContinuITy (3%) [ Uniqueness fails.

The problem is ill-posed

Prior knowledge is required
Regulations

Bayesian approach



Inverse problem optimization

Maximum a posteriori (A, 8} = argmax{p(A, 5| X))}
(MAP):

Posterior distribution: P(A, S|X) x p(X|A, S)p(A[S)p(S|

Objective function:  Jas = argmin{-logp(A, S|X)}
x m'gwig{—fr&gp{X|A,S} — logp(S) — logp(A|S)]

PAGE 39



Key research issues
p(A, S|X) o< p(X|A, S)p(AlS)p(S
1) The modelling of the data
likelihood p(X|A, §).

2) The modelling of
the conditional distribution p(A|S).

3) The accurate modelling of the
abundance prior p(S).

4) The design of an efficient
optimization scheme for solving the
MAP problem.

PAGE 40

K
L= Z apsk +n,
L—1

1) The characterization of noise n
in HSI.

2) The development of effective
constraint on endmembers {a,}.

3) The modeling of abundance
{s;} in HSI.

4) The design of fast and efficient
model optimization techniques.



3. Key research issues
o Characterization of noise in HSI
o Endmember constraints

o Modelling the spatial correlation in abundances



Characterization of noise in HSI

> Thermal noise and quantization noise are signal independent
and usually Gaussian distributed.

> Other noise types: shot noise, sparse noise, pattern noise

> Current imaging systems that are designed based on the
assumption of additive Gaussian noise perform quite well.

> Noise levels of HSI vary dramatically over bands for most
sensors due to different spectral absorption properties of
different spectral channels and the typical existence of “junk
bands”.

PAGE 42



Noise variance heterogeneity

35

Noise standard deviation (o)
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Wavelet Estimation
- Multiple Regression

s

W/

Figure: Comparison of noise
estimation of Indian Pines in the
wavelet domain and by using
multiple regression approach.
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250

Rasti, Behnood. Sparse hyperspectral image modeling and
restoration. Diss. Ph. D. dissertation, Dept. Elect. Compuit.
Eng., Univ. Iceland, Reykjavik, Iceland, 2014.



Characterization of noise in HSI

Current SU methods:
assume that noise in different bands are IID Gaussian
noise.
--- undesirable preservation of noise in some bands &
erasing of the signal in some other bands.
> The modelling of the noise variance heterogeneity

effect in HSIs.

PAGE 44

44



Constraints on endmembers

Geometrical-based algorithms

Prior distribution constraints in the Bayesian framework
K-P-means

Endmember variability modelling

The purified means constraint on A for SU.

The modelling of the endmember variability effect.

v v v U U U U

The selection of the proper prior distribution of A.

PAGE 45



Modelling of large-scale non-stationary spatial
correlation in abundances

O Graphical models e.g., conditional random field(CRF)
Od Non-local approaches e.g., Non-local networks

O Deepimage prior (DIP)

Traditional SU method (NNLS):

-- ignore the spatial correlation effect of {sf}.

-- small scale and isotropic correlations using MRF
stationary spatial correlation.

Jasper Ridge

> Leveraging DIP using a FCNN for abundance mapping.
> Applying the CRF approach on S as a post-processing method.
> Incorporating non-local neural network to CNN or FCNN.

PAGE 46



4. Implementation of a Bayesian spectral

unmixing framework



Key research issues

Ja,s = argmin{—iogp(4, 5| X)}
x arg wig{—fugp(XlA. 8) — logp(S) — logp(A|S)]

1) The modelling of the data
likelihood p(X|A, S).

2) The modelling of
the conditional distribution p(A|S).

3) The accurate modelling of the
abundance prior p(S).

4) The design of an efficient

optimization scheme for solving the '

MAP problem.

K
T; = Z agst +n,
L—1

1) The characterization of noise n
in HSI.

2) The development of effective
constraint on endmembers {a,}.

3) The modeling of abundance
{s;} in HSI.

4) The design of fast and efficient
model optimization techniques.



Data likelihood with heterogeneous noise
variance -- p(X|A, S)

5 Spectral unmixing 4 & Forward model, X
X =AS+ N

-- Noise variance heterogeneity

1 1 + . _ T2
'-;r——na,.;ffi lni] A =

= ————eap(~
JenPAl 2

p(n;)

M

p(X14,8) = [ =

1 T p 1 ~
exp(—=(X — AS)"A7I(X — AS
O (=35 ) AT ),




Conditional distribution of endmembers

given abundance with purified means
-- p(A[S)

p(aklS, ajzp) = ;ﬁifp(—”ﬂk — E(ayS, a’j#k”[zj

O

p(A|S) = H;; arlS,a, Achieved by the |
i endmember extraction algorithm
“K-P-Means”

K

M
. 1
k E : T VS o = _§ : A

i£k




Prior of abundance with DIP — p(S)

1 ~
p(S) = —exp(~||S - E(S)||*,

E(S) = f(Z.8,

AQL The forward propagation of fully convolutional neural network (FCNN).

Skip connection

- -

128@3x3 conv (s=2, p=1) + I Balch normalization +

Input Z

Batch normalization + 128@3x3 conv (s=2, p=1) +
Baich normalization +

LeakyRel

yre LeakyRelu
128 3x3 conv (s=1, p=1) + 128@1x1 conv (s=1, p=0) +
Batch normalization + Batch normalization +
LeakyRelu LeakyRelu

g indng
P
(Vs ]
]
ko4

128

4@ 1x%1 conv (s=1, p=1) +
Batch normalization +

' Softmax

Skip connection:

4@ 121 conv (5=1, p=0) +
Balch normalization +
LeakyRelu

= Upsampling

Ulyanov, Dmitry, Andrea Vedaldi, and Victor
Lempitsky. "Deep image prior." Proceedings
of the IEEE Conference on Computer Vision
and Pattern Recoanition. 2018.



The proposed Bayesian convolutional unmixing
network (BCUN)

Skip connection

R

Input Z
S indinQ
>
)

Batch normalization + 128@3x3 conv (s=2, p=1) + Batch normalization +
Batch normalization +

max
LeakyRelu LeakyRelu Softma
Skip connection:
128@3x3 conv (=1, p=1) + 128@1x1 conv (s=1, p=0) + 4@ 1x1 conv (s=1, p=0) +
l Batch normalization + I Batch normalization + Batch normalization +
LeakyRelu LeakyRelu LeakyRelu

= Upsampling




Model optimization
-- Maximum a posteriori (MAP) optimization

Ja.s =argmin{((X — AE(S|X))" A" (X — AE(S|X)))

K
+ llar — E(alS, ﬂ'j;é!;_-)”z}
k=1

-- Expectation-Maximization (EM) algorithm
E-step: Given endmembers A estimate abundances S by optimizing a FCNN.

M-step: Given S, estimate endmembers A. Endmembers A are estimated using
purified means approach.



Experiment Design

<+ Dataset:
Simulated HSI & real HSI (Jasper Ridge)

<+ Methods compared:

PPI, N-FINDR, VCA, Kpmeans uDAs & BCUN

Simulated HSI
104X104X200

% Numerical measure:
Spectral angle distance (SAD)
Abundance angle distance (AAD)
Structural similarity (SSIM)

Mean squared error (MSE)

Real HSI
512x614x224



Test on Simulated HSI



Model comparison -- Abundance estimation

PPI :) VC/ () BCUN (g) Ground truth

Figure 1. The abundance maps achieved by different methods on one
endmember with different SNR values, i.e., 10, 20, 30dB from top row to
bottom row and the ground truth (GT) at the last column.



Model comparison -- Endmember extraction
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Figure 2. Four endmembers
achieved by different
methods on the HSI with
SNR equals 30dB.



Test on real HSI



Model comparison -- Abundance estimation

() PPI (b) N-FINDR ans () BCUN

Figure 3. The abundance maps achieved by different methods on four endmembers (tree, water, soil,
road) respectively from top row to bottom row.



Model comparison -- Endmember extraction
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Conclusion of experiments

> The proposed BCUN approach constitutes a complete
Bayesian approach with effective modelling and
optimization approaches for enhanced spectral
unmixing.

> The proposed approach was tested on both real and
simulated HSI, in comparison with several other popular
SU methods, and results demonstrated that the
proposed BCUN method was more capable of
accurately estimating both the endmember and
abundance from HSIs.



Outline

2 2

Hyperspectral Basics

Hyperspectral Image Processing Tasks
UAV Hyperspectral Crop and Soil Mapping
Classification vs. Spectral Unmixing
Hyperspectral Unmixing

Hyperspectral Image Classification



HSI Classification

Knowledge-driven feature engineering vs.
Data-driven deep learning (DL)

Ao\
Input > ‘ﬁj »  Features %‘3}% Output

Input

Feature Learing + Classifier
(End-to-End Leaming)
(b)

Advantages of DL approaches for RS image classification:
(1) automatically learn the “best” feature without requiring task-specific classifier-specific knowledge;
(2) End-to-end approach without any intermediate stages in the data-processing pipeline;

(3) Complex model -> strong modeling capability -> efficiently capture the subtle differences among classes;

(4) Powerful GPU computation



Classification Hyperspectral
Map Image
Cube
Extraction

W

Training & Validation Training & Validation
E Sets

Accuracy

~r

CNN Model Training
& Selection

~

Final CNN
Model

Test
Set

Flowchart of using CNN for HSI classification

Test
Accuracy

Steps for Hyperspectral
Image (HSI) classification
using the CNN approach:

Step 1: 3D cube extraction, for each
pixel with known label, extract a 3D
cube centered at this pixel to use as
Yi

Step 2: split the 3D cubes into
training set, validation set and test
set;

Step 3: train CNN on the training
set, compare models using
validation set and determine the
“best” model architecture;

Step 4: generate test accuracy and
classification maps using the “best”
model architecture;



CNN Architecture for HSI Classification

Original Indian
Pines image
145x145x200

K feature maps k <2 feature maps k3 feature maps

input patch c1 &RelU mp1 c2 + RelLU mp2 c3 + RelLU fc1 fc2 fc3 fc4
dxdxn 1414 gt | Pl el 1%01% q2 1™ ™2 199 g9 jfed ife2 (L L

CNN architecture for HSI classification (from Paoletti et al. 2018)


https://www.sciencedirect.com/science/article/pii/S0924271617303660

CNN Code is on Github

£ syde? 70/ hsi_classification e G©umwatch~ 2 dste 0 Yrok 0
£ Code Issues o 1 Pull reguests 0 D Actions 'l Projects 0 1 Security Insights 1 Settings
Use convolutional neural network (CNN) for hyperspeciral image (HS!) classification Edit - s ! ;
P hyperspectral image (HSI) classification using
convolutional neural network (CNN) in Pytorch
i 7 commits ¥ 1 branch 3 0 packages "0 releases i View license -
step 1: install Pytorch
Branch: masier « Piirwy piall request Create new e Uplaad files  Find file Clang or dawnlasd step 2. down'oad the COde by
: Bt nasw ke LICENSE mad Labesi Comemit diladZh 6 hours a0 R CONE MG gD Comiyde T70MA_Cassficadon of
B _pycache add files 7 hours ago step 3: train the model
i data chebsied: datatraan_0.05 vl 0U2fest_ ik, mat 7 hours ago Python van py
W model deleted: datafirain_0.05_val_0.21est_mask mat 7 hours ago step 4: obtain classificaton map
| LICENSE.md new file: LICENSE.md & hours ago Python classdication_map py
{| README.md madified: README.md 7 hours ago
classifcation_map.py add fes 7 hours ago
| 1ooks. py add Hes 7 ROwWrs ago

| train.py add Mes 7 hours ago



t torch
m torch import nn

ny_conv(input_channels, output_channels, is_bn=False, conv_mode=
assert conv_mode in [ ]
conv_layer = nn.Sequential()
if conv_mode == :
conv_layer.add_nodule( , nn.Conv2d(input_channels, output_channels, 3, stridesi, padding=1))
if is_bn:
conv_layer.add_nmodule( , nn.BatchNorm2d(output_channels))
conv_layer.add_module('a , nn.RelLU(True))
return conv_layer

class CNN(nn.Module):
def __init__(self, config):
super(CNN, self).__init_ ()

input_shape = config|

n_classes = config[

conv_layers = config[
feature_nums = config|

is_bn = config| ]
conv_mode = config| v ]

¥ construct the convolutiona lavers and
assert conv_layers == len(feature_nuns)
conv_i = None
for 1 in range(conv_layers):
if L == 6:
conv_i = [my_conv(input_shape[1], feature_nums[i], is_bn=is_bn, conv_mode=conv_mode), nn.MaxPool2d(2)]
else:
conv_i += [my_conv(feature_nums[i - 1], feature_nuns[i], is_bn=is_bn, conv_mode=conv_mode), nn.MaxPool2d(2)]
self.conv = nn.Sequential(*conv_i)
= mpute conv feature e fina fully co
with torch.no_grad():
self.feature_size = self.conv(torch.zeros(*input_shape)).view(-1).shape[0]
# construct the final fully connected layer
self.fc = nn.Linear(self.feature_size, n_classes)
forward(self, x):
x = self.conv(x)
X = x.view(x.size(9), -1)
x = self.fc(x)
return x

basic_cnn.py
defines the
CNN
architecture for
HSI
classification




from __tuture__ import absolute_import
from _ future__ im t division
from __future__ import print_function

import os
import pdb

n copy import deepcopy
rt torch

n torch imp
from tools i
from model 1 t
os.environ| f ] =

t nn, optim

TRAIN_PROP
VAL_PROP =
BATCH_SIZE
PATCH_SIZE
EPOCH =

LR = 0.
TEST_INTERVAL =

NET_TYPE = % 'bpnet', ‘basic cnn', 'resnet', 'dip resnet

DATA_TYPE = g ‘patch'(resnet, cnn), 'vector'(bp), 'full_image’'(dip_resnet

CONV_LAYERS =

FEATURE_NUNS = [32, 64, ]
IS_ BN = True # set 'True' means using batch normalization
CONV_MNOOE =

config = dict(conv_layers=CONV_LAYERS, feature_nums=FEATURE_NUMS, is_bn=IS_BN, conv_mode=CONV_MODE)#, act_ fun=AC

SNNBEANSSANNOENAREANROANNBENNBENNEER prepare data and construct network SANRSESERNSENNBERNRORRRBENRBERRABRRREEN

data_dir =

target_dir =

mask_dir =

data, target = read_data(data_dir, target_dir)

train_data, train_target, val_data, val_target, test_data, test_target = \
get_data(data, target, DATA_TYPE, TRAIN_PROP, VAL_PROP, mask _dir, patch_size=PATCH_SIZE, to_tensor=True)
input_shape = train_data.shape
n_classes = train_target.max().item() +
model = get_net(NET_TYPE, input_shape, n_classes, config)

train.py sets
parameters
and trains the
CNN model




ef train(model, train_data, train_target):

global LR, EPOCH, BATCH_SIZE, NET_TYPE, TEST_INTERVAL, \
val_data, val_target, test_data, test_target
nodel.train()
if torch.cuda.is_available():
model = model.cuda()
criterion = nn.CrossEntropyloss() # lo f
optinizer = optin.Adan(nodel.parameters(), Lr=LR)
loss_list
test_acc_list []
train_acc_list =[]
best_test =

train.py sets
save dir =
state_dict = None pal’am eters

best_state = None
test_accuracy = None

for apoch n’range(EPOCH): and trains the
for 1dx, samples in enunerate(get_one_batch(train_data, train_target, BATCH_SIZE)): CN N mOdel

data = samples(@]

target = samples[1]

output = model(data)

loss = criterion(output, target)
optintzer.zero_grad()
loss.backward()

optinizer.step()

if idx % TEST_INTERVAL == 0:
traln_accuracy = test(model, train_data, train_target)[1]
val_accuracy = test(model, val_data, val_target)[1]
test_accuracy = test(model, test data, test_target)[1]
torch.cuda.enpty cache()
print(
format(epoch + 1, idx + 1, loss.item(), train_accuracy, val_accuracy, test_accuracy),
\r', end="")
Lf test_accuracy > best_test:
best_train = train_accuracy
best_val = val_accuracy
best_test test_accuracy
best_state = [epoch + 1, idx + 1, loss, best_train, best_val, best_test]
state_dict = deepcopy(model.state_dict())
loss_list.append(loss.iten())
tratn_acc_list.append(train_accuracy)
test_acc_list.append(test_accuracy)

plot_curves(loss_list, train_acc_list, test_acc_list)

nodel_name = NET_TYPE + + str(BATCH_SIZE) + + str(EPOCH) +

nodel_dir = os.path.join(save_dir, model_name)

torch.save(state_dict, model _dir)

print(

print( B y .format(*best_state))
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L numpy as np

L torch
from model t basic_cnn
from tools import *

def get_all_patches(data, patch_size):
width = patch_size //
mask = np.ones((data.shape[1], data.shape[2]))

patch_data = np.zeros((data.shape[1] * data.shape[2], data.shape[©], patch_size, patch_size))

data = np.pad(data, ((0, 8), (width, width), (

mask =

index = np.argwhere(mask)

for 1, loc in enumerate(index):
patch_data[i, :, :, :] = data[:, loc[®]

return patch_data

test(model, data, target=None):

model.eval()

output = model(data)

output = output.cpu()

pred = torch.max(output, 1)

accuracy = None

if target is not None:
target = target.cpu()
accuracy = compute_accuracy(pred, target)

return pred, accuracy

].data.numpy()

data_dir =
target_dir =
nodel_dir =
patch_size =
config = { t s=2(15 , 13, 13),
: [32, 64, 64],
: True
i}

data, target = read_data(data_dir, target_dir)
patch_data = get_all_patches(data, patch_size)
patch_data = torch.fron_numpy(patch_data).float().

nodel = basic_cnn.CNN(config).cuda()
model.load_state_dict(torch.load(model _dir))
pred = test(model, patch_data)[o]

map = pred.reshape(145, 145)

plot classification maps(map, target, cmaps= )

np.pad(mask, ((width, width), (width, w

width, width)),
idth)),

- width:loc[8] + width +

cuda()

)

, loc[1]

- width:loc[1] + width +

]

classification
map.py
predicts all
pixels on HSI
and generates
classification

map using the
trained model
by train.py




get_one_batch(train_data, train_target=None, batch_size=

if train_target is None:
train_target = torch.zeros(train_data.shape[0])
train_target = torch.split(train_target, batch_size, dim=0)

train_target = torch.split(train_target, batch_size, dim=8)

a0

train_data = torch.split(train_data, batch_size, dins0)

@«

0

for 1 in range(len(train_data)):

yield train_data[i], train_target[i] tools py
compute_accuracy(pred, target): Implements

accuracy = float((pred == target.data. cpu() nuﬂpy()) astype(int).sun()) / \

return accugz;t(mrget i Some funCtlonS
for generating

# predict nop: 1350145 training

syl bbbty samples and

targét : t?rgel-copy() V| Su al | Zat| on.

pred = pred*mask
target = target*mask

VhHWN =D

< o @ o o

compute_accuracy_fron_mask(pred, target, mask):

pred = pred[pred != 8]
target = target[target !=
accuracy = float((pred == target).sun()) [/ float(len(pred))

return accuracy

plot_curves(loss, train_accuracy, test_accuracy):

f, (ax1, ax2) = plt.subplots(1, 2, figsizes( 1))

axi.set_title( , fontsize=

ax2.set_title( , fontsize=

ax1.plot(loss, color= )

ax2.plot(train_accuracy, color= , label= )
ax2.plot(test_accuracy, color= , label= )

legend = ax2.legend(fontsizes'» , loc= , shadow=True)

plt. show()




Loss, Train Acc and Test Acc over lterations

Loas Traom snd Test Kouracies

(1) Loss keeps decreasing
over stochastic gradient
descent (SGD) iterations;

(2) Both train and test
) accuracies keep
| increasing;

(3) Training accuracy is
| higher than test accuracy
i over iterations;
|

—— Train ACcuracy
= Tesl &ccuracy

e e



False Color Image

00 =0 S WA de e b =

Alfalfa

Corn-notill
Corn-mintill

Corn

Grass-pasture
Grass-trees
Grass-pasture-mowed
Hav-windrowed

10
11
12
13
14
15
16

Oals

Sovbean-notill
Sovbean-mintill
Soybean-clean

Wheat

Woods
Buildings-Grass-Trees-Drives
Stone-Steel-Towers

Classification Results
via CNN (with 20%
pixels used as training
samples)

(1) Overall, the classification
maps generated by CNN
match the ground truth map
very well;

(2) CNN full map generally
delineates quite well the
edges in the false color
image, although there is still
room for improvement in
terms of edge preservation;

(3) Overall accuracy of 94.5%
Is very high;



Quantitative Classification Performance Evaluation

Reference Data

Water | Forest Urban Total

Water 21 6 0 27
[1y]
©

O Forest 5 31 1 37
s
QO
=

§ Urban 7 2 22 31
O

Total 33 39 23 95

1. Overall accuracy (OA)
OA= (21 + 31+ 22)/95=77.9%
2. Producer’s accuracy (PA)
PAyater= 21/33 = 64%
3. User’s accuracy (UA)

UA = 21127= 78%

How to calculate PA and UA for Forest and
Urban?



Convolutional neural network (CNN)

72033 |8
4 |5 (3 [8 |4 1 (0 |-1
Sl lioNl s |4 * |1 [0 |-
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Max pooling layer

N

o0

QD] O,

o

N

Feature map

Pooled
Feature map



Fully connected layer Input layer

Hidden layer

Output layer

Row 1

Row 2

Row 3

Row 4




Questions?
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