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Rendering: 3D -> 2D

« Rendering or image synthesis is a process of generating an image from a 2D or 3D model using a
computer program. The resulting image is called render

* Rendering is usually the last step in the graphics pipeline which gives models and animations their
final appearance.

* Any rendering application gets an input file called a scene file. This scene file contains multiple
information like for example:

= Model (30 or 2D model itself)

+  Texture

+ Shading

+  Shadows
+  Reflection
+  Lighting

+  Viewpoint

+ The information stated above is considered as a feature for rendering.

« It means we can say that each scene file contains multiple features that need to be understood and
processed by the rendering algorithm or application to generate a processed image.



Rendering: 3D -> 2D

Image formation model

Given a set of 3D points, possibly, the most interesting part is to see how can
it be used for rendering. You might be previously familiar with a point-wise
et-blending used in NeRF. Turns out that NeRFs and Gaussian splatting share
the same image formation model. To see this, let's take a little detour and re-
visit the volumetric rendering formula given in NeRF® and many of its
follow-up works (1). We will also rewrite it using simple transitions (2):
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Fig.1: We present a method that optimizes a continuous 5D neural radiance
field representation (volume density and view-dependent color at any continuous
location) of a scene from a set of input images. We use techniques from volume
rendering to accumulate samples of this scene representation along rays to render
the scene from any viewpoint. Here, we visualize the set of 100 input views of the
synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.



Neural radiative field
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Fig. 2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c¢). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).
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5D Input Output
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the neural network. In |1, we model radiance fields with a feed-forward neural
network, which takes a 5D input and is trained to produce the corresponding
color and volume density as output; see above. Recall, however, that color is view-
dependent and volume density is not. To account for this, we first pass the input
AD coordinate through several feed-forward lavers, which produce bath the
volume density and a feature vector as output. This feature veetor is then
concatenated with the viewing direction and passed through an extra feed-
forward laver to predict the view-dependent, RGB color; see below.

Volume Density { @7 Res Color

View dependent RGB output



a few extra details. We now understand most of the components of a NeRF. "fl'f_f-":] = (3“1[20#}}]. m{ﬂ“gp}, vee gin{ﬂﬁ'_lxp}‘ cﬂg[jif_ |-;|'|'p} ]

However, the approach that we've described up to this point is actually shown in
1] 1o be inefficient and g..'m.*r;l”\..' bad at rcpn'wmi.ng scenes, To in1pr\m‘c the

madel, we cam: . . . ) )
T W E Fut simply. positional embeddings take a scalar number as inpur fe.g., a coordinan

1. Replace spatial coordinates (for bath the spatial location and the viewing value or an index representing position in & sequence) and produce a higher-

. . ) . . dimensional vector as output. We can gither learn these embeddings during
direction) with positional embeddings. b R P A B b . R L
training or use a fixed function vo generate them. For MeRFs, we use the function
2, Adopt a hierarchical sampling approach for vaelume rendering. . . . .
P PN 3P B shown above, which takes a scalar p as input and produces a ZL-dimensional

By using positional embeddings, we map the feed-forward nerwork’s inpurs (i.e., position encoding as sutput.

the spatial location and viewing direction coordinates) 1o a higher-dimension. The hierarchical sampling approach used by NeRF makes the rendering process
Prior work showed that such an approach, as opposed to using spatial or more efficient by only sampling (and passing through the feed-forward neural
directional coordinates as input directly, allows neural networks o better model netwark) locations and viewing directions thar are likely to impact the final
high-frequency li.e.. changing a lotiquickly) features of o scene [5]. This makes the rendering result, This way, we only evaluate the neural nerwork where needed anc

avoid wasting computation on empry or eccluded areas.,
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quality of the NeRF's outpur much better; see below,
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No View Dependence No Positional Encoding 8

Fig.4: Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through
a high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.






Radiative Transfer Equations - how to describe the variation of the radiance L per unit

distance a’ona a’? The equation of radiative transfer simolv says that as @ beam of radiation travels * '~~~ ~=~==*= ~booemtice
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In-scattering - How to describe radiation directional properties? BRDF
The Bi-directional Reflectance Distribution Function
(BRDF) is used to describe the dependence of

\ \ é ‘\ reflected radiation on the incident (i) and outgeing (v}
o directions (Nicodemus, 1977).
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Out-scattering & absorption - How to quantify attenuation? Beer’s Law

- T

H
Differential  In-scattering  Qui-scattering y
radiance & absorption E}v

V

* Forany =,y € V, the attenuation between x and y is

T(x < y) :=exp (— [ o (7) (lr)
Jxy)

+ Aline integral between x and y
s 0<T(x+ry)<1forall xand y
« For homogeneous media with o;(x) = o,

T(x < y) = exp(—|@ — yllov)



Solving Radiative Transfer Equations - Derive Integral form of RTEs

N »

Tyy e~y > w All RTMs follow this
oV general form.
Y
Attenuation In-scattering The differences
hx.w)
L(z,w) = / T(r < ) [a,(r)/ folr.w; = w)L(r.w;) dw; + Q(r,w)| dr however, are
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essentially due to
the various forms for
the emission and
(The second term vanishes when h(z.w) = +00) absorption

coefficients.
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Attenuation Boundary cond.



Rendering: 3D -> 2D

Volurnetric data

It does not consider the following image plane
factors:
1. The light source and its geometry

DR assigns color (¢} and opacity (a,)
MIP uses maxdip,}

3. The bidirectional reflectance A
distribution function

4. The influence of the properties of
the volume, e.g., biochemical
properties T Discretized ke

’ : 2

Concept of Volume Rendering
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What we see @
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Improve Neural radiative field for Remote Sensing

® Encoder should output properties of the media, not just density and color.

® Decoder should integrate the properties of the media, e.g., biochemical
properties, into radiative transfer, via RTMs, such as Prosail?
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DampedHarmonic oscillator - how to solve partial differential equation?

d’x  dx

For a mass on a spring oscillating in a
viscous fluid, the period remains
constant, but the amplitudes of the
oscillations decrease due to the damping
caused by the fluid.

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium
position, experiences a restoring force F proportional to the displacement x

F = — k7,

where kis a positive constant.



2 > % a = PDEs are foundational in the modern
Partial Differential Equations Definition scientific understanding of sound, heat,
diffusion, electrostatics,

electrodynamics, thermodynamics, fluid
differential eqllations that introduce [GERERER A CEUR UG dyna mlcs' elast|C|ty’ general relatl\”ty'

Partial differential equations can be defined as a class of

arious partial derivatives of an unknown multivariable function} and quantum mechanics (Schrédinger
equation, Pauli equation etc.)

Such a multivariable function can consist of several dependent
and independent variables. An equation that can solve a given
partial differential equation is known as a partial solution. Partial Differential Equations Example

An example of a partial differential equation is ‘:—i:’- = ¢2 ‘92‘,,’ . This
It is usually impossible to write down explicit formulae
for solutions of partial differential equations. There is
correspondingly a vast amount of modern Partial Differential Equations Examples off cvemat
mathematical and scientific research on methods to
numerically approximate solutions of certain partial (a1 "W
. . . . Heat Conduction Equation:| — ’
differential equations using computers. | ot x|

is a one dimensional wave equation.

P
Laplace Equation:‘ A = s = 1

Wave Equation of a Vibrating (
Membrane:
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https://en.wikipedia.org/wiki/Fluid_dynamics
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https://en.wikipedia.org/wiki/Pauli_equation

Naive neural network

g g 0% Data-driven NN? Disadvantages?

e EXBCT SOMION
e Neurdl network prediction
Trawwung data

% Damped harmonic oscillator
() NN(t; 6) = u(t)
d 2 + u e + ku=0



Naive neural network

\ s Data-driven NN? Disadvantages?
= Exact sohution ) o
D R (1) Relies on training data, cannot

extroloplate
(2) Sentitive to data quantify and
L& quality, overfitting
L(6) =NZ(NN(“‘9) - u)? (3) Not physics informated
{

Damped harmonic oscillator
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Naive neural network

\ Training step: 640 Data-driven NN? Disadvantages?
Exact solution . ..
== Noural network prediction (1) Relies on training data, cannot
arung data

extroloplate
(2) Sentitive to data quantify and
L& quality, overfitting
L(6) =NZ(NN(‘“0) - u;)? (3) Not physics informated
{

How to incorporate partial
differential equation into the
neural network?

Damped harmonic oscillator
(O NN(t; 8) = u(t) u  du
m-m- + s +ku=0
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How to train physics-informed NN? Benefits?

Naive neural network Physics-informed neural network

Training step: 650 Training step: 5400

e Exact solution

d*u  du
Mw'i'}ld—ti'kuﬂo

— Neural network predection
; & Wamung data
Traneng data s b Phyysics 1048 training locations
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Naive neural network Physics-informed neural network

Training step: 990 Training step: 15300

e Ex0Ct sOMION
e Exact solution w— Neurasl network prediction
— e &l NEtWOrK Dredi tiOn Waring data
Traineng data 5 Phyysics 108 training locations
1w 1<
L(©®) =5 ) (NN(t:0) - w)? L(6) =‘Z‘””““"’ - u)?
1 1

Benefits? A 3
(1) Requires lessdata HZ dcz + ”d tk NN(‘/"’)
(2) resist noise J

(3) better extrapolation

Damped harmonic oscillator
t () NN(t;8) = u(t) 42 du
d % — Y — o +ku=0

Raissi ot al, Physics-nformed neural networks: A deep leaming framework for soiving forward and nverse



Physics-informed neural network (PINN)

Exact solution

s Neural network prediction
Tramning dota
Physics l0ss training locations

(NN(q; 8) - zﬁ)2 Supervised loss

Physics loss

2
LARL I YV
e “d I (& )) aka PDE residual

ONN(t; 0) = u(t)

From a ML perspective:

* Physics loss is an unsupervised regulariser, which
adds prior knowledge

From a mathematical perspective:

* PINNSs provide a way to solve PDEs:

* Neural network is a mesh-free, functional
approximation of PDE solution

» Physics loss is used to assert solution is
consistent with PDE

» Supervised loss is used to assert
boundary/initial conditions, to ensure solution is
unique



Using NN to incorporate any PD equations?

In general, we can represent a differential equation as

Ut ‘l‘N[U,)\] =0

Here, u(t, x) denotes the latent (hidden) solution and N [u; A] is a nonlinear
operator parametrized by A. Let’s define f{t, x) to be given by the left-hand

side of the differential equation.

fi=wu +Nuj

The goal of the problem is to approximate u(t, x) using a NN. The training

data containing only the initial and boundary points is used for this purpose.

We would also want to minimize f{t, x) resulting in a PINN. We sample

collocation points and use them for this purpose. You can also use the

collocation points to approximate w(t, x). One objective is to minimize the
data loss (first part) and the other to minimize physics loss (second part).
Both the objectives can be combined to form a loss function shown below.

MSE = MSE, + MSE;,

N
1 < o .
MSE, = — 3 |u(ti,al) — u'[?

Ny
1 ) ,
MSE; = 33 I (2l
i=1

Raissi, Maziar, Paris Perdikaris, and George Em
Karniadakis. "Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial
differential equations." arXiv preprint
arXiv:1711.10561 (2017).



Using NN to solve Burgers’ equation?

collocation points to approximate ae, x). One objective is to minimize the
data lass (first part) and the other to minimize physics loss (second part), Now, let’s look at the case of Burger’s Equation. The Burger's equation and its

sttt sibjun:thrais cain ot commblrwict s eems . Mt it om 3 e ol o, the boundary and initial conditions are shown in the following figure.

MSFE = MSEH -+ MSEf: U + uuy — (0.01/7)u,, =0, ze€[-1,1], tel0,1],

u(0,z) = —sin(wz),
N
1 i o ) u(t,—1) = u(t,1) = 0.
E : i i i]2
MSEH e F |‘U.(tu= '.'.[.Tu) — U | Burger's Equation
=1
From the differential equation, let’s define fit, x) as

] A

MSE; = 3 HGED f =y +uuy — (0.01/7)ug,

i=1
Burgers' equation or Bateman—Burgers equation is a funldamental partial In the case of Burger's equation, there are two inputs — distance, x and the
differential equation and convection—diffusion equation[ ] occurring in time, . u(t, x) is the NN whose inputs are x and . Using the output of NN and

various areas of applied mathematics, such as fluid mechanics,[z] nonlinear
acoustics,[3] gas dynamics, and traffic flow.[*] The equation was first
introduced by Harry Bateman in 1915/°116] and later studied by Johannes

Martinus Burgers in 1948.7]

anto-differentiation, fit, x) is computed. These values are plugged into the

loss function and the PINN is trained. The following code snippet illustrates


https://en.wikipedia.org/wiki/Partial_differential_equation
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https://en.wikipedia.org/wiki/Nonlinear_acoustics
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How to implement it in pytorch? Auto-differentiation make things easier

loss function and the PINN is trained. The following code snippet illustrates
the auto-differentiation and loss formulation in “Pytorch”.

def u(t, x):
u = neural_net(torch.concat([t, x]))
return u

def f(t, x):
u = u(t, x)
u_t torch,autograd.grad(u, t, create_graph=True)[8]
u_x torch.autograd.grad(u, x, create_graph=True)[8]
u_xx = torch,autograd.grad(u_x, x, create_graph=True)[0]
f=ut+urux-~- (0.01/torch.pt) » u_xx
return f

def compute_loss(t_u, x_u, u_true, t_f, x_f):
loss = nn.MSELoss()

u = u(t u, x_u)

True
True

f.requires_grad
f.requires_grad
= f(e_f, x_f)

loss(u, u_true)

loss(f, torch.zeros_like(f))
1=11+ 12

return 1

Now, let’s look at the case of Burger’s Equation. The Burger's equation and its

the boundary and initial conditions are shown in the following figure.

u + uu, — (0.01/m)u,. =0, ze€[-1,1, tel0,1],
u(0,z) = —sin(wz),
u(t,—1) = u(t,1) = 0.

Burgers Equation

From the differential equation, let’s define fit, x) as

fi=uy+ uuy — (0.01/7)ug,

In the case of Burger’s equation, there are two inputs — distance, x and the
time, t. uft, x) is the NN whose inputs are x and t. Using the output of NN and
anto-differentiation, fit, x) is computed. These values are plugged into the

loss function and the PINN is trained. The following code snippet illustrates



The authors in the paper have used a nine-layered NN containing 20 neurons
each with a hyperbolic tangent (tanh) activation function. They used 10,000
collocation points generated using a Latin Hypercube Sampling strategy and
100 initial/boundary points. The image below illustrates the results. On the
top, the output u(t, x) from the trained NN is shown. On the bottom,
comparison of the predicted and exact solutions corresponding to the three
temporal snapshots are depicted. The model obtained a L2-error of 6.7e-4 on

the test set. ..
How many training samples, where? Why

sparse samples lead to good exptropolations?

u(t, x)
1.0
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0.5 0.50
0.25
8 0.0 0.00
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t
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— Exact w= = Prediction

loss function and the PINN is trained. The following code snippet illustrates
the auto-differentiation and loss formulation in “Pytorch”.

def u(e, x):
u = neural_net(torch.concat([t, x]))
return u

def f(r, x):
u = u(t, x)
u_t = torch.autograd.grad(u, t, create_graph=True)[0]
u_x = torch,autograd.grad(u, x, create_graph=True)[6]
u_xx = torch.autograd.grad(u_x, x, create_graph=True)([0]
f=ut+usux- (0.01/torch.pi) » u_xx
return f

"o

def compute_loss(t_u, x u, u_true, t_f, x_f):
loss = nn.MSELoss()

v = u(t_u, x_u)

t_f.requires_grad = True
x_f.requires_grad = True
f = f(t_f, x_f)

11 = loss(u, u_true)

12 = loss(f, torch.zeros_like(f))
1=119¢12

return 1

Using only a handful of initial and boundary data, the physics
informed neural network can accurately capture the intricate non-
linear behaviour of the Burgers’ equation that leads to the
development of a sharp internal layer around t = 0.4. The latter is
notoriously hard to accurately resolve with classical numerical
methods and requires a laborious spatio-temporal discretization of
equation.
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Physics-informed machine learning

George Em Karniadakis®'?*, loannis G. Kevrekidis®**, Lu Lu®?®, Paris Perdikaris®,
Sifan Wang’ and Liu Yang®'

Abstract | Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy
data into existing algorithms, mesh generation remains complex, and high-dimensional problems
governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with
hidden physics is often prohibitively expensive and requires different formulations and elaborate
computer codes, Machine learning has emerged as a promising alternative, but training deep neural
networks requires big data, not always available for scientific problems. Instead, such networks can
be trained from additional information obtained by enforcing the physical laws (for example, at
random points in the continuous space-time domain). Such physics-informed learning integrates
(noisy) data and mathematical models, and implements them through neural networks or other
kernel-based regression networks. Moreover, it may be possible to design specialized network
architectures that automatically satisfy some of the physical invariants for better accuracy, faster
training and improved generalization. Here, we review some of the prevailing trends in embedding
nhwsics inta machine learnina. nresent some of the current canahilities and limitations and discuss

ML) Physics-informed machine learning [HTML] nature.com
GE Karniadakis, |G Kevrekidis, L Lu... - Nature Reviews ..., 2021 - nature.com

... problems using physics-informed learning, seamlessly ._. regression-based physics-informed
networks (PINs) (Box 2). ... new capabilities of physics-informed learning machines and ...
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Three possible categories of physical problems and associated
available data Small data Some data Big data

Data

Physics

Lots of physics Some physics No physics

In the small data regime, it is assumed that one knows all the physics, and data are provided for the initial and boundary
conditions as well as the coefficients of a partial differential equation.

The ubiquitous regime in applications is the middle one, where one knows some data and some physics, possibly missing some
parameter values or even an entire term in the partial differential equation, for example, reactions in an advection—diffusion—

reaction system.

Finally, there is the regime with big data, where one may not know any of the physics, and where a data-driven approach may
be most effective, for example, using operator regression methods to discover new physics.

Physics-informed machine learning can seamlessly integrate data and the governing physical laws, including models with
partially missing physics, in a unified way. This can be expressed compactly using automatic differentiation and neural networks
that are designed to produce predictions that respect the underlying physical principles.




What is a physics-informed solution?

Observational bias Inductive bias Learning bias
O ‘ $ ‘ Making a learning algorithm
\ p__u physics-informed amounts to

" .r |

Physics-informed machine learning that can steer

the learning process towards
| | l identifying physically consistent
solutions

Symmetry Conservation laws Dynamics



Observational bias?

Observational bias Inductive bias Learning bias
O ‘ $ ‘ Observational biases can be
\ p__u introduced directly through
! ! l or carefully

crafted data augmentation
procedures. Training a
l machine learning (ML) system
on such data allows it to learn
functions, vector fields
and operators that reflect the
physical structure of the data.

Physics-informed machine learning

Symmetry Conservation laws Dynamics



Inductive bias?

Observational bias Inductive bias Learning bias

O A 3

L Y

Physics-informed machine learning

Symmetry Conservation laws Dynamics

Conservation law, in physics, a principle that states that a certain physical
property (i.e., a measurable quantity) does not change in the course of time
within an isolated physical system.

Inductive biases correspond to prior
assumptions that can be incorporated by
tailored interventions to an ML model
architecture, such that the predictions
sought are guaranteed to

, typically
expressed in the form of certain
mathematical constraints. One would
argue that this is the most
principled way of making a learning
algorithm physics-informed, as it allows
for the underlying physical constraints to
be strictly satisfied. However, such
approaches can
be limited to accounting for relatively
simple symmetry groups (CNN?) (such as
translations, permutations, reflections,
rotations and so on) that are known a
priori, and may often lead to complex
implementations that are difficult to scale.

Does Neural radiative field fall in this
category?
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A convolutional neural
network (CNN) has a
structural bias for
translational
invariance, meaning
it is designed to
recognize patterns that
are invariant to shifts in
position

Another CNN inductive
bias is locality i.e the
features are generated
using local pixels and
then combined
heirarchically.



Learning bias?

Observational bias

Symmetry

Inductive bias

¥

Physics-informed machine learning

Conservation laws

Learning bias

Dynamics

Learning biases can be introduced by
appropriate choice of loss functions,
constraints and inference algorithms that
can modulate the training phase of an ML
model to explicitly favour convergence
towards solutions that adhere to the
underlying physics.

By using and tuning such soft penalty
constraints, the underlying physical laws
can only be approximately satisfied;
however, this provides a very flexible
platform for introducing a broad class of
physics-based biases that can be
expressed

Does the example with the Damped
Harmonic oscillator falls into this

category?



Learning bias vs. Inductive bias

(1) Soft constraint vs. Hard constraint
(2) The weight of physics-constraint is determined by a weight parameter.
(3) Multitask-learning, supervised data-driven loss + unsupervised physics-driven

loss



Neural radiative field: Which category?

5D Input Output Volume Rendering R
Position + Direction Color + Density Rendering Loss
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Fig. 2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).
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Physics-informed NN: Which category?

Naive neural network Physics-informed neural network

Training step: 650 Training step: 5400
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(1) Direct (2) LUT approach (3) Numerical (4) Simulation & ML : (5) ML (6) DL
inversion Approach Which category?

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form no no Yes, estimate X no no no

known, but with some unknown and U together

parameters U

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, no yes? Yes? Use (X,Y) to yes? Yes, use both Yes, use both

can accommodate both? estimate parameters simulated and observed simulated and observed

in f(.) data data
Can use prior information? e.g., no Yes? Use value prior for Yes? Use value prior of Yes, Use value prior in sampling Yes, spatial prior in Yes, similar to ML
spatial prior and value prior sampling X in Bayesian estimation and spatial prior in Random fields Random field
approaches

Advantages Knowledge | Knowledge-driven; Knowledge-driven; Knowledge-driven; Data-driven; Strong modeling
-driven; Intuitive, easy, estimate U; flexible; continuous fitting; flexible; Classic; capability;
Simple, discrete fitting; Efficient for simple good inter/extrapolation; automatic feature
easy f(.) in convex faster than LUT learning;

problems

Disadvantages Unrealistic; | Sensitive to Rely on efficiency Overfitting and underfitting | Weak modeling Overfitting and
rely on accuracy of f(.), of nonlinear solver; risk to simulated data; capability; Rely on underfitting; Black-
simple f(.) similarity metrics, Slow; Local difficult model selection; “good” engineered box;

sampling density optimum; Sensitive to accuracy of f(.), features; Black-box;

and range; slow if
LUT is large; bad for
extrapolation;

similarity metrics, sampling
density and range;

Overfitting, underfitting;
Feature and model
selection is difficult and
slow




Advantages of physics-informated machine learning

Merits of physics-informed learning

There are already many publications on physics-
informed ML across different disciplines for specific
applications. For example, different extensions of PINNs
cover conservation laws'’" as well as stochastic and frac-
tional PDEs for random phenomena and for anomalous
transport'**'", Combining domain decomposition with
PINNs provides more flexibility in multiscale problems,
while the formulations are relatively simple to imple-
ment in parallel since each subdomain may be repre-
sented by a different NN, assigned to a different GPU

with very small communication cost'""'**'*>, Collectively,
the results from these works demonstrate that PINNs
are particularly effective in solving i]]-Fused and inverse
problems, whereas for forward, well-posed problems
that do not require any data assimilation the existing
numerical grid-based solvers currently outperform
PINNSs. In the following, we discuss in more detail for
which scenarios the use of PINNs may be advantageous

and highlight these advantages in some prototypical
applications.



Better at addressing imperfect model and data

Incomplete models and imper;fect data

n the PDEs are unknown — scenarios 1nwh1ch clas—
smal numencal methuds may fail. When dealing with
1mperfect models and da a, it is beneficial to integrate

B-PINNs) . Moreover, compared with the tradi-
tional numerical methods, physics-informed learning
is mesh-free, without computationally expensive mesh
generation, and thus can easily handle irregular and




Strong generalization in small data regime

Deep learning usually requires a large amount of data
for training, and in many physical problems it is difficult
to obtain the necessary data at high accuracy. In these

nf data. To enforce the physu:s one can embed the
physical principles into the network architecture, use
ph}’sn:s as soft penalty' constraints or use data aug-

y interpolation that is, it can perfnrm spatlal
extrapnlatmn in bnundary—-value problems'”.




Understanding deep learning

In addition to enhancing the trainability and generali-
zation of ML models, physical principles are also being
used to provide theoretical insight and elucidate the
inner mechanisms behlnd the surprising effectiveness
of deep learning. For example, in REFS'*"'"%, the authors
use the jamming transition of granular media to under-
stand the double-descent phenomenon of deep learning
in the over- arameterlzed renne Shallow NNs car

can be anal sed in the pmbablhty measure space with
_ instead of the high-dimensional
parameter space'".

Another work'"“ rigorously constructed an exact
Imarp j.ﬂ frﬂm the ariations -

es Inspired by the successful density




Tackling high dimensionality

Deep learning has been very successful in solving
high-dimensional problems, such as image classifi-
cation with fine resolution, language modelling, and
high-dimensional PDEs. One reason for this suc-
cess is that DNNs can break the curse of dimension-
ality under the condition that the target function is a
hierarchical composition of local functions'"'*'. For
example, in REF'* the authors reformulated general
high-dimensional parabolic PDEs using backward sto-
chastic differential equations, approximating the gradi-
ent of the solution with DNNs, and then designing the
loss based on the discretized stochastic integral and
the given terminal condition. In practice, this approach
was used to solve high-dimensional Black-Scholes,
Hamilton-Jacobi-Bellman and Allen-Cahn equations.



Uncertainty quantification
Forecasting reliably the evolution of mult1sca1e and
multiphysics systems requires uncertainty quantifica
This important issue has recewed a lot of attention
in the past 20 years, augmenting traclltmnal computa-
tional methods with stochastic formulations to tackle
uncertainty due to the bou.ndary condmons or material
properties'*~"*!, For physics-informed learning models,




Solving Prosail model via physics-informed approaches?

(1) Observation bias -> simulate data using physical models
(2) Inductive bias -> integrate physics into model architecture

(3) Learning bias -> use unsupervise PDE loss
Spectra observations -> Encoder (NN) -> bioparameters -> Prosail -> Simulated spectra

Loss = (Spectra observations - Simulated spectra)
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Deep learning and process understanding
for data-driven Earth system science
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Observed and
simulated ‘big data’

Patterns and
knowledge

Velocity
Speed of

change Real-time critical

Variety Integrated across
Diversedata . disciplines
Confidence
robustness
Veracity

Ay e'
Uncataity | ;o romir0ec2

Veracity: the quality of being true, honest,
or accurate.

in some areas, not all

Fig. 1 | Big data challenges in the geoscientific context, Data size now
exceeds 100 petabytes, and is growing quasi-exponentially (tapering of

the figure to the right indicates decreasing data size.) The speed of change
exceeds 5 petabytes a year; data are taken at frequencies of up to 10 Hz or
more; reprocessing and versioning are common challenges. Data sources
can be one- to four-dimensional, spatially integrated, from the organ level
(such as leaves) to the global level. Earth has diverse observational systems,
from remote sensing to in situ observation. The uncertainty of data can
stem from observational errors or conceptual inconsistencies.
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The Earth System

Complex
Biology + Chemlstry + Physics
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Slide courtesy from the author Markus Reichstein



It's not like we
haven't got
enough data at
our hands...

There’s
observational
data...




Model data are the result of simulations generated by numerically solved [

differential equations derived from physical models by discretizing the Earth and
representing key processes with parameterizations
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Multimodel analysis WCRP® CMIP6 ESGF &’
IDCC we

Last report:
3.5PBytes
Next report:

~ 30PBytes

©DKRZ/MPI-M



Climate Models at the 1km scale are coming up i
~650 GB of data per output time step
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THE EARTH SYSTEMBS

Stratosphere Terrestrial (Long Wave)
Radiation

The behavior is dominated by spatial and temporal relations
Main research focus:

o seasonal meteorological predictions

o forecasting extreme events: floods, fires,...

o long term climate predictions
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Machine learning applications often do not directly and
exhaustively account for spatio-temporal correlations

Deep learning is a promising approach

Example: convolutional networks (spatial) + recurrent networks (memory, sequence learning)



Examples of Deep Learning applications in i
Earth System Science

Machine learning tasks Earth science tasks Machine learning tasks Earth science tasks

Short-term forecasting

a  Object classification and localization Pattern classification o Video icth

b Super-resolution and fusion
8x8 32 x32 Ground
samples truth d Language translation Dynamic time series modelling

Er bobte 2 essen Real vs predicted humidity vakues

w
Humidity

Teme

Slide courtesy from the author Markus Reichstein



Table 1 | Conventional approaches and deep learning approaches to geoscientific tasks

Analytical task  Scientific task

Conventional approaches

Limitations of conventional approaches

Emergent or potential approaches

Classification and anomaly detection

Regression

Finding extreme weather
patterns

Land-use and change
detection

Predict fluxes from
atmospheric conditions

Predict vegetation properties
from atmospheric conditions

Predict river runoff in
ungauged catchments

State prediction

Precipitation nowcasting

Downscaling and bias-
correcting forecasts

Seasonal forecasts

Transport modelling

Multivariate, threshold-based
detection

Pixel-by-pixel spectral
classification

Random forests, kernel
methods, feedforward neural
networks

Semi-empirical algorithms
(temperature sums, water
deficits)

Process models or statistical
models with hand-designed
topographic features®!

Physical modelling with data
assimilation

Dynarnic modelling and
statistical approaches

FPhysical modelling with initial
conditions from data

Physical modelling of transport

Heuristic approach, ad hoc criteria
used

Shallow spatial context used, or none

Memory and lag effects not
considered

Prescriptive in terms of functional
forms and dynamic assumptions

Consideration of spatial context
limited to hand-designed features

Computational limits due to resolution,
data used only to update states

Computational limits, subjective
feature selection

Fully dependent on physical model,
current skill relatively weak

Fully dependent on physical model,
computational limits

Supervised and semi-supervised
convolutional neural networks®!#2

Convolutional neural netwarks*?

Recurrent neural networks, long-
short-term-memories (LSTMs)#993.100

Recurrent neural networks??, possibly
with spatial context

Combination of convolutional neural
network with recurrent networks

Convolutional-LSTM nets short-range
spatial context®?

Convolutional nets’?, conditional
generative adversarial networks
(cGANs)3393.101

Corvolutional-LSTM nets with
long-range spatial context

Hybrid physical-convolutional network
models5%94




Deep learning challenges
in Earth System science
e Diverse sources of noise— poor signal-to-noise ratio

e Inconsistencies — energy and mass conservations, density must be positive,...
e Extrapolation problem — system changes in time: data shift or concept drift
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Data shift or concept drift
e training data are not longer representative if the system has changed
e the accuracy of the trained model definitely decreased under data shift/concept drift



Deep learning challenges
in Earth System science

Images

Beyond visible spectrum — different statistical properties, no i.i.d. sets
40 000 x 20 000 pixels for a regular 1 km global resolution

Multiple scales

Scale invariant features

No ImageNet — and difficult to have, example: labelling clouds
Missing data — a solution Christopher Kadow, the leader of DKRZ
machine learning research group, adapted the Nvidia Technology for
image inpainting



Hybrid models
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ML and DL Physical
models models

Lightweighting/simplifying/speeding up physical models

e improve parametrizations
e analysis of model-observations mismatch
e emulation



Observations Observations
Parameterization @ Parameterization
meta-model 1 meta-model 2
| (5
Parameters -1 Parameters -1
e
Submodel 1 — Output Submodel 1 — Output
Input Cost Input !
function x :
ML@ MLQ MLE)
! | |
Forcing Ground truth  Ground truth Ground truth

Fig. 3 | Linkages between physical models and machine learning. An

abstraction of a part of a physical system—for example, an Earth system

model—is depicted here. The model consists of submodels; each submodel

has parameters and forcing variables as inputs and produces output,

which can be input (forcing) to another sub-model. Data-driven learning
approaches can be helpful in various instances, as indicated by the circled

numbers. For example, the circle labelled 2 represents hybrid modelling.

See the text for more detail. ML, machine learning.

(1) Improving parameterizations
See Fig. 3 (circle 1). Physical models require pummm'zlet many of

those cannot be easily derived from first principles. learning
can learn parameterizations to optimally describe the ground truth
that can be observed or generated from detailed and high-resolution
models through first principles. For example, instead of assigning
parameters of the vegetation in an Earth system model to plant func-
tional types (a common ad hoc decision in most global land surface
models), one can allow these parameterizations to be learned from
appropriate sets of statistical covariates, allowing them to be more
dynamic, interdependent and contextual. A prototypical approach has
been taken already in hydrology where the mapping of environmental
variables (for example, precipitation and surface sl to catchment
parameters (such as mean, minimum and maximum streamflow) has
been learned from a few thousand catchments and applied globally to
feed hydrological models®’. Another example from global atmospheric
modelling is learning the effective coarse-scale physical parameters
of precipitating convection (for example, the fraction of water that
is precipitating out of a cloud during convection) from data or high-
resolution models®*“’ (the high-resolution models are too expen-
sive to run, which is why coarse-scale parametrizations are needed).
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Fig. 3 | Linkages between physical models and machine learning. An
abstraction of a part of a physical system—for example, an Earth system
model—is depicted here. The model consists of submodels; each submodel

has parameters and forcing variables as inputs and produces output,

which can be input (forcing) to another sub-model. Data-driven learning
approaches can be helpful in various instances, as indicated by the circled
numbers. For example, the circle labelled 2 represents hybrid modelling.

See the text for more detail. ML, machine learning.

Submodel 1 — Output

Ground truth

(2) Replacing a ‘physical’ sub-model with a machine learning
model

See Fig. 3 (circle 2). If formulations of a submodel are of sem: emp: ncal
nature, where the ﬁmctmnal form has litt :

e2 model, which combines the strf:ngths nfph}rsma]
mndellmg (theoretical foundations, interpretable compartments) and

machine learning (data- adaptweness} For example, we could ccup]e
well estabhshed lﬂlﬁical{ terential) equa s

poor
I eeiila trmspm‘t mnductanne. This results ina
more phrsu:al model that obeys accepted conservation of mass and
energy laws, but its regulation (biological) is flexible and learned from
data. Such principles have recently been taken to efficiently model

motion of water in specifically predict sea surface tem-
peratures. Here, the on was learned via a deep neural network,
and then used to update the content and temperatures via phys-

ically modelling the movement implied by the motion field®. Also,
a number of atmospheric scientists have begun experimenting with
related approaches to circumvent long-standing biases in physically
based parameterizations of atmospheric convection®

The problem may become more complicated if physical model and
machine learning parameters are to be estimated simultaneously while
maintaining interpretability, especially when several sub-models are
replaced with machine learning approaches. In the field of chemistry
this approach has been used in calibration exercises and to describe
changes in unknown kinetic rates while maintaining mass balance in
biochemical reactor modelling”, which, although less complex, bears
many similarities to hydrological and biogeochemical modelling.
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model—is depicted here. The model consists of submodels; each submodel

has parameters and forcing variables as inputs and produces output,

which can be input (forcing) to another sub-model. Data-driven learning
approaches can be helpful in various instances, as indicated by the circled

numbers. For example, the circle labelled 2 represents hybrid modelling.
See the text for more detail. ML, machine learning.

(3) Analysis of model-observation mismatch

See Fig. 3 (circle 3). Deviations of a physical model from observations
can be perceived as imperfect knowledge causing model error, assum-
ing no observational biases. Machine learning can help to identify, vis-
ualize and understand the patterns of model error, which allows us also
to correct model outputs accordingly. For example, machine learning
can extract patterns from data automatically and identify those which
are not explicitly represented in the physical model. This approach
helps to improve the physical model and theory. In practice, it can also
serve to correct the model bias of dynamic variables, or it can facilitate
improved downscaling to finer spatial scales compared to tedious and

ad hoc hand-designed approaches™ "~
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Fig. 3 | Linkages between physical models and machine learning. An
abstraction of a part of a physical system—for example, an Earth system
model—is depicted here. The model consists of submodels; each submodel
has parameters and forcing variables as inputs and produces output,

which can be input (forcing) to another sub-model. Data-driven learning
approaches can be helpful in various instances, as indicated by the circled
numbers. For example, the circle labelled 2 represents hybrid modelling.
See the text for more detail. ML, machine learning.

(4) Constraining submodels

See Fig. 3 (circle 4). One can drive a submodel with the output from
a machine learning algorithm, instead of another (potentially biased)
submodel in an offline simulation. This helps to disentangle model
error originating from the submodule of interest from errors of cou-
pled submodules. As a consequence, this simplifies and reduces biases
and uncertainties in model parameter calibration or the assimilation
of observed system state variables.
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model—is depicted here. The model consists of submodels; each submodel

has parameters and forcing variables as inputs and produces output,

which can be input (forcing) to another sub-model. Data-driven learning
approaches can be helpful in various instances, as indicated by the circled

numbers. For example, the circle labelled 2 represents hybrid modelling.

See the text for more detail. ML, machine learning.

(5) Surrogate modelling or emulation

See Fig. 3 (circle 5). Emulation of the full (or specific parts of ) a physical
model can be useful for computational efficiency and tractability rea-
sons, Machine learning emulators, once trained, can achieve simulations
orders of magnitude faster than the without
sacrificing much accuracy. This allows for fast sensitivity analysis,
model parameter calibration, and derivation of confidence intervals
for the estimates. For example, machine learning emulators are used
to replace computationally expensive, physics-based radiative-transfer
models of the interactions between radiation, vegetation and atmos-
phere®”™7, which are critical for the interpretation and assimilation



ML and DL Physical
models models

Domain knowledge can guide/optimize the pure data-driven methods

e design the architecture

e constrain the cost (or reward) function

e physically based data augmentation: expansion of the data set
for undersampled regions



What is a physics-informed solution?

Observational bias Inductive bias Learning bias
O ‘ $ ‘ Making a learning algorithm
\ p__u physics-informed amounts to

" .r |

Physics-informed machine learning that can steer

the learning process towards
| | l identifying physically consistent
solutions

Symmetry Conservation laws Dynamics
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Fig. 4 | Interpretation of hybrid modelling as deepening a deep learning network, and the motion field is further processed with a physical model
architecture by adding one or several physical layers after the multilayer to predict future states. Adapted from figure 1 of de Bezenac et al.**,

neural network to make the model more physically realistic. a, The ¢, A biological regulation process (opening of the stomatal ‘valves’ controlling
multilayer neural network, with n the number of neural layers and m the water vapour flux from the leaves) is modelled with a recurrent neural
number of physical layers. b and ¢ are concrete examples of hybrid modelling  network. Then a physical diffusion model is used to estimate transpiration,
(circle 2 in Fig. 3). b, Prediction of sea-surface temperatures, where a motion which in turn influences some of the drivers, such as soil moisture. The basic
field of the water is learned with a convolutional-deconvolutional neural scheme in a is inspired by figure 1.5 in Goodfellow et al.”® and redrawn.



	Slide 1: ENGO 697
	Slide 2: Structure from Motion: 2D -> 3D
	Slide 3: Rendering: 3D -> 2D
	Slide 4: Rendering: 3D -> 2D
	Slide 5: NeRF: Neural Radiative Field
	Slide 6: Neural radiative field
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Rendering: 3D -> 2D
	Slide 15: Improve Neural radiative field for Remote Sensing
	Slide 16: Damped  Harmonic oscillator - how to solve partial differential equation?  
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: What is a physics-informed solution? 
	Slide 31: Observational bias? 
	Slide 32: Inductive bias?  
	Slide 33
	Slide 34: Learning bias? 
	Slide 35: Learning bias vs. Inductive bias
	Slide 36: Neural radiative field: Which category?
	Slide 37
	Slide 38
	Slide 39: Advantages of physics-informated machine learning
	Slide 40: Better at addressing imperfect model and data
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Solving Prosail model via physics-informed approaches?
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: What is a physics-informed solution? 
	Slide 73

