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Structure from Motion: 2D -> 3D
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Rendering: 3D -> 2D



Rendering: 3D -> 2D
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NeRF: Neural Radiative Field
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Neural radiative field
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View dependent RGB output
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Radiative Transfer Equations - how to describe the variation of the radiance L per unit
distance along 𝟂? The equation of radiative transfer simply says that as a beam of radiation travels, it loses energy to absorption, gains energy by

emission processes, and redistributes energy by scattering.



In-scattering - How to describe radiation directional properties? BRDF



Out-scattering & absorption - How to quantify attenuation? Beer’s Law



Solving Radiative Transfer Equations - Derive Integral form of RTEs

All RTMs follow this 
general form.

The differences 
however, are 
essentially due to 
the various forms for 
the emission and 
absorption 
coefficients.



Rendering: 3D -> 2D
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It does not consider the following 
factors:
1. The light source and its geometry 
2. The in-scattering?
3. The bidirectional reflectance 
distribution function
4. The influence of the properties of 
the volume, e.g., biochemical 
properties



Improve Neural radiative field for Remote Sensing

●Encoder should output properties of the media, not just density and color. 

●Encoder & Decoder should address not only the camera geometry, but 
also light source geometry 

●Decoder should use bidirectional reflectance distribution function to model 
geometry dependance

●Decoder should integrate the properties of the media, e.g., biochemical 
properties, into radiative transfer, via RTMs, such as Prosail? 
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DampedHarmonic oscillator - how to solve partial differential equation?

For a mass on a spring oscillating in a 

viscous fluid, the period remains 

constant, but the amplitudes of the 

oscillations decrease due to the damping 

caused by the fluid.



It is usually impossible to write down explicit formulae 
for solutions of partial differential equations. There is 
correspondingly a vast amount of modern 
mathematical and scientific research on methods to 
numerically approximate solutions of certain partial 
differential equations using computers.

PDEs are foundational in the modern 
scientific understanding of sound, heat, 
diffusion, electrostatics, 
electrodynamics, thermodynamics, fluid 
dynamics, elasticity, general relativity, 
and quantum mechanics (Schrödinger 
equation, Pauli equation etc.)

https://en.wikipedia.org/wiki/Numerical_methods_for_partial_differential_equations
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Electrostatics
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Elasticity_(physics)
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Pauli_equation


Data-driven NN? Disadvantages? 



Data-driven NN? Disadvantages? 

(1) Relies on training data, cannot 

extroloplate

(2) Sentitive to data quantify and 
quality, overfitting

(3) Not physics informated



Data-driven NN? Disadvantages? 

(1) Relies on training data, cannot 

extroloplate

(2) Sentitive to data quantify and 
quality, overfitting

(3) Not physics informated

How to incorporate partial 

differential equation into the 

neural network? 



How to train physics-informed NN? Benefits? 



Benefits? 

(1) Requires less data
(2) resist noise
(3) better extrapolation





Using NN to incorporate any PD equations? 

Raissi, Maziar, Paris Perdikaris, and George Em 

Karniadakis. "Physics informed deep learning 

(part i): Data-driven solutions of nonlinear partial 

differential equations." arXiv preprint 

arXiv:1711.10561 (2017).



Using NN to solve Burgers’ equation? 

Burgers' equation or Bateman–Burgers equation is a fundamental partial 

differential equation and convection–diffusion equation[1] occurring in 
various areas of applied mathematics, such as fluid mechanics,[2] nonlinear 

acoustics,[3] gas dynamics, and traffic flow.[4] The equation was first 
introduced by Harry Bateman in 1915[5][6] and later studied by Johannes 

Martinus Burgers in 1948.[7]

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Nonlinear_acoustics
https://en.wikipedia.org/wiki/Nonlinear_acoustics
https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Gas_dynamics
https://en.wikipedia.org/wiki/Traffic_flow
https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Harry_Bateman
https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Johannes_Martinus_Burgers
https://en.wikipedia.org/wiki/Johannes_Martinus_Burgers
https://en.wikipedia.org/wiki/Burgers%27_equation


How to implement it in pytorch? Auto-differentiation make things easier 



How many training samples, where? Why 

sparse samples lead to good exptropolations? 

Using only a handful of initial and boundary data, the physics 

informed neural network can accurately capture the intricate non-

linear behaviour of the Burgers’ equation that leads to the 

development of a sharp internal layer around t = 0.4. The latter is 

notoriously hard to accurately resolve with classical numerical 

methods and requires a laborious spatio-temporal discretization of 

equation.





Three possible categories of physical problems and associated 

available data

In the small data regime, it is assumed that one knows all the physics, and data are provided for the initial and boundary 

conditions as well as the coefficients of a partial differential equation. 

The ubiquitous regime in applications is the middle one, where one knows some data and some physics, possibly missing some

parameter values or even an entire term in the partial differential equation, for example, reactions in an advection–diffusion–

reaction system. 

Finally, there is the regime with big data, where one may not know any of the physics, and where a data-driven approach may 

be most effective, for example, using operator regression methods to discover new physics. 

Physics-informed machine learning can seamlessly integrate data and the governing physical laws, including models with 

partially missing physics, in a unified way. This can be expressed compactly using automatic differentiation and neural networks

that are designed to produce predictions that respect the underlying physical principles.



What is a physics-informed solution? 

Making a learning algorithm 

physics-informed amounts to 

introducing appropriate 

observational, inductive or 

learning biases that can steer 

the learning process towards 

identifying physically consistent 

solutions



Observational bias? 

Observational biases can be 

introduced directly through data 

that embody the

underlying physics or carefully 

crafted data augmentation 

procedures. Training a

machine learning (ML) system 

on such data allows it to learn 

functions, vector fields

and operators that reflect the 

physical structure of the data.



Inductive bias?  Inductive biases correspond to prior 

assumptions that can be incorporated by 

tailored interventions to an ML model 

architecture, such that the predictions 

sought are guaranteed to implicitly satisfy 

a set of given physical laws, typically 

expressed in the form of certain 

mathematical constraints. One would 

argue that this is the most

principled way of making a learning 

algorithm physics-informed, as it allows 

for the underlying physical constraints to 

be strictly satisfied. However, such 

approaches can

be limited to accounting for relatively 

simple symmetry groups (CNN?) (such as 

translations, permutations, reflections, 

rotations and so on) that are known a 

priori, and may often lead to complex 

implementations that are difficult to scale.

Does Neural radiative field fall in this 

category? 

Conservation law, in physics, a principle that states that a certain physical 
property (i.e., a measurable quantity) does not change in the course of time 
within an isolated physical system.



A convolutional neural 

network (CNN) has a 

structural bias for 

translational 

invariance, meaning 

it is designed to 

recognize patterns that 

are invariant to shifts in 

position

Another CNN inductive 

bias is locality i.e the 

features are generated 

using local pixels and 

then combined 

heirarchically.



Learning bias? 
Learning biases can be introduced by 

appropriate choice of loss functions, 

constraints and inference algorithms that 

can modulate the training phase of an ML 

model to explicitly favour convergence 

towards solutions that adhere to the 

underlying physics.

By using and tuning such soft penalty 

constraints, the underlying physical laws 

can only be approximately satisfied; 

however, this provides a very flexible 

platform for introducing a broad class of 

physics-based biases that can be 

expressed in the form of integral, 

differential or even fractional equations.

Does the example with the Damped  

Harmonic oscillator falls into this 

category? 



Learning bias vs. Inductive bias

(1) Soft constraint vs. Hard constraint

(2) The weight of physics-constraint is determined by a weight parameter. 

(3) Multitask-learning, supervised data-driven loss + unsupervised physics-driven 

loss



Neural radiative field: Which category?

36



Physics-informed NN: Which category?



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML : 

Which category?
(5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



Advantages of physics-informated machine learning



Better at addressing imperfect model and data











Solving Prosail model via physics-informed approaches?

(1) Observation bias -> simulate data using physical models

(2) Inductive bias -> integrate physics into model architecture

(3) Learning bias -> use unsupervise PDE loss

Spectra observations -> Encoder (NN) -> bioparameters -> Prosail -> Simulated spectra

Loss = (Spectra observations - Simulated spectra)





Veracity: the quality of being true, honest, 

or accurate.



















































What is a physics-informed solution? 

Making a learning algorithm 

physics-informed amounts to 

introducing appropriate 

observational, inductive or 

learning biases that can steer 

the learning process towards 

identifying physically consistent 

solutions
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