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f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, similar to ML

Strong modeling
capability;
automatic feature
learning;

Overfitting and
underfitting; Black-
box;



Why CNN for Image?

®* When processing image, the first layer of
fully connected network would be very larg

Can the fully connected network be simplified
by considering the properties of image



Why CNN for Image

® Some patterns are much smaller than the
whole image

A neuron does not have to see the whole
image_to discover the pattern.
Connecting to small region with less

“beak” detector




Why CNN for Image

®* The same patterns appear in different regions.

Do almost the same thing

They can use the same

E _—'-._f"__vﬁ’t of parameters.

B “middle beak”
detector




Why CNN for Image

° Subsampling the pixels will not change

the object bird

—)

bird

subsampling

We can subsample the pixels to make image smaller

- Less parameters for the network to process the
image



Three Steps for Deep Learning

Step 2: Step 3: pick
the best
function




The whole CNN

L 2
) 4

Max Pooling

Convolution

> Can repeat
many times

Max Pooling




The whole CNN

Property 1

Convolution

Property 2
Max Pooling

Property 3 Convolution

N

Max Pooling

>

Can repeat
many times



The whole CNN

> Can repeat
many times

Fully Connected
Feedforward




Consider channel =1

Convolutional Layer (black and white image)
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6 X 6 image

(The values in the filters

are unknown parameters.)
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=1

stride
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6 X 6 image

12



111 ]-1
Convolutional Layer 4] 1[-1] Filer2
-1(1)-1

stride=1 Do the same process for
every filter
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Convolutional Layer

s

64
filters




Multiple
Convolutional Layers

I Filter: :
i 3x3x64 .




Multiple

Convolutional Layers
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The whole CNN

¥
‘ Max Pooling
Fully Connected

Feedforward Convolution

‘ Max Pooling

Flatten

\

Can repeat
many times



Pooling — Max Pooling

Filter 1 -1 1 |-1]{ Filter2
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Convolutional Layers
+ Pooling

Repeat




The whole CNN

Convolution

Pooling
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Self-attention for Graph

e"’r\ )

Consider edge: only attention
to connected nodes

This is one type of Graph Neural Network (GNN).
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Self-attention for Image

An image can also be This is a vector.
considered as a vector set.

/

3

10 /

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-
RGB-matrix_figl5 282798184
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Self-attention
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https://arxiv.org/abs/1706.03 76224



Self-attention
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Can be either input or a hidden layer
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Self-attention for Graph

e"’r\ )

Consider edge: only attention
to connected nodes

This is one type of Graph Neural Network (GNN).
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Self-attention
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Find the relevant vectors in a sequence



Self-attention
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Self-attention ai; = exp(ay; )/ Z exp(ay,; )
j
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Self-attention Extract information based
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Self-attention parallel
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Can be either input or a hidden layer

31



Self-attention
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Self-attention for Graph

e"’r\ )

Consider edge: only attention
to connected nodes

This is one type of Graph Neural Network (GNN).
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Self-attention g

= quﬂi
ki — Wkﬂi
vt = Wvat
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Self-attention

1,1
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Self-attention

A’ softmax A K’ 36



Self-attention




Self-attention -
L

-
to be learned

- e

Attention Matrix

Parameters
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Self-attention for Graph

e"’r\ )

Consider edge: only attention
to connected nodes

This is one type of Graph Neural Network (GNN).
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Many applications ... v

Transformer BERT
https://arxiv.org/abs/1706.03762 https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)!



https://arxiv.org/abs/1910.12977

Self-attention for Speech

Attention in a range
A
b3

Speech is a very long p
vector sequence. 10ms - b?

VRN T S N
If input sequence is length L /Qf\

L A’ o2 H ”

Attention
Matrix L Truncated Self-attention

41
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ﬂ fx) Self-Attention GAN

ransposec .
PO attention

map
® softmax ,ﬁ self-attention

| .D g(x) -F_l feature maps (o)

—— ® 114
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https://arxiv.org/abs/2005.12872




Self-attention v.s. CNN

[
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CNN: self-attention that can
only attends in a receptive field

> CNN is simplified self-attention.

Self-attention: CNN with
learnable receptive field

> Self-attention is the complex
version of CNN.
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Self-attention v.s. CNN

( Multi-Head Self-Attention Layer N
ﬁl 53 » |ﬂ. J'il,.,\
A 3 L MHSA(X)
o = - /1'-/// .
. & x E . r ="
] R il 1 i
r.n n.‘;-u B - ------
e Loyl : w.,
J,,.‘.:__-.;.-,., 2 L x. A.e  Filter matrices
,\_Allullbn maps for plu.-lq y.
On the Relationship between Self-Attention and
Convolutional Layers https://arxiv.org/abs/1911.03584
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Self-attention v.s. CNN

Good for more data
Self-attention

1Good for less data
CNN
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ResNet50x1 (BiT)
*ViT-L/32 ViT-b/32 -=ResNetl52x2 (BiT)

10M 30M

100 M

300 M

Number of JFT pre-training samples

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale https://arxiv.org/pdf/2010.11928; pdf



Self-attention Recurrent Neural Network (RNN)
v.s. RNN FC

FC FC FC
hardto g e
consider

1 t .

{ Self-attention m }
1 & 1
easy to
consider D G

Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention https://arxiv.org/abs/2006.16236




Structure from Motion: 2D -> 3D

i

@
3D-Model*,

corresponding
foature points

a7



Rendering: 3D -> 2D

Rendering or image synthesis is a process of generating an image from a 2D or 3D model using a

computer program. The resulting image is called render

Rendering is usually the last step in the graphics pipeline which gives models and animations their

final appearance.

« Any rendering application gets an input file called a scene file. This scene file contains multiple
information like for example:

Model (3D or 2D model itself)
Texture

Shading

Shadows

Reflection

Lighting

Viewpoint

+  The information stated above is considered as a feature for rendering.

+ It means we can say that each scene file contains multiple features that need to be understood and
processed by the rendering algorithm or application to generate a processed image.
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Rendering: 3D -> 2D

Image formation model

Given a set of 3D points, possibly, the most interesting part is to see how can
it be used for rendering. You might be previously familiar with a point-wise
et-blending used in NeRF. Turns out that NeRFs and Gaussian splatting share
the same image formation model. To see this, let’s take a little detour and re-
visit the volumetric rendering formula given in NeRF® and many of its
follow-up works (1). We will also rewrite it using simple transitions (2):

Velurnetric data {"‘{p} —

N
oo pone = Z .-(1 - PNI]{—J"E{I‘")\}T: =

N
:Z (1 —exp(—0:6;)) exp(— Zﬂﬁ}— (1)

N i=1
DVR color (<} and opacity | : .
“ﬂgﬁlp uﬁi:ﬂtp?c“ o = Z ,il - {'x])[—ﬂ;ﬂ.:}_lHE‘K]?{—HJ-:‘J'_;']J =
i=1 o j=1 1_",1}
i-1
=Zrn,H{1—nJ (2)

j=1
—_——

fransmiftance



NeRF: Neural Radiative Field

Input Images Optimize NeRF Render new views
TAvCARgLRTFY
AN
FEAWIEgS R
RFBHNINRFES A
rEPEFEHELEN P B TN g

TR T . s :ﬂmgf
Flaregduded oy SRR T

LRV EG e . 01)
CREALASBAA " "

P2EFE RIS

Fig.1: We present a method that optimizes a continuous 5D neural radiance
field representation (volume density and view-dependent color at any continuous
location) of a scene from a set of input images. We use techniques from volume
rendering to accumulate samples of this scene representation along rays to render
the scene from any viewpoint. Here, we visualize the set of 100 input views of the
synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.
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AN

Neural radiative field angE

5D Input Output Volume Rendering
Position + Direction Rendering Loss

I il
WAL BT

Ray 2

2
2

e

HRay Distanes

(c) (d)

Fig. 2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).



5D Input Output
Position + Direction Color + Density

r' (x.3.2.60.6) "[I]]"" (RGBo) \ Ray 1
o " e

e ‘| Fe 7% g 3

the neural network. In [1], we model radiance fields with a feed-forward neural
network, which takes a 5D input and is trained to produce the corresponding
color and volume density as output; see above. Recall, however, that color is view-
dependent and volume density is not. To account for this, we first pass the input
3D coordinate through several feed-forward lavers, which produce bath the
volume density and a feature vector as output. This feature veetor is then
concatenated with the viewing direction and passed through an extra feed-
forward layer to predict the view-dependent, RGB color; see below.

Spatial Location Nokume Deally { #"" RGB Color

View dependent RGB output
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a few extra details. We now understand most of the components of a NeRF. .j,[p:] = [Sill[i':'#;}]l. E‘DS[E“'H']‘J}, vee gin{EL_lgp}1 m[ZL_ |-;|'|'p} ]

However, the approach that we've described up to this point is actually shown in
1] 1o be inefficient and g..-m*r;”\..' bad at rcpn'n,'nli.n;[; scenes. To i111pr\m'¢ the

madel, we can: . L. . . .
ik Put simply, positional embeddings take a scalar number as input (e.g., a coardinan

1. Replace spatial coordinates (for bath the spatial location and the viewing value or an index representing position in & sequence) and produce o higher-

A . " " dimensional vector as output. We can gither learn these embeddings during
direction) with positional embeddings. b e ¥ AR o - E ®
training of use a fixed function 1o generate them. For MeRFs, we use the function
2, Adoept a hierarchical sampling approach for velume rendering. . . . .
P pling app E shown above, which takes a scalar p as input and produces a 2L-dimensional

By using positional embeddings, we map the feed-forward network’s inpues (e, POsH0OR encoding as output.

the spatial location and viewing direction coordinates) to a higher-dimension. The hierarchical sampling approach used by NeRF makes the rendering process
Prior work showed that such an approach, as opposed to using spatial or mare efficient by only sampling land passing through the feed-forward newral
directional coordinates as input directly, allows neural networks to better model network] locations and viewing directions thar are likely 1o impact the final

hi[-‘.h-F:r-.'qucnc‘,-' lie., fh?l“l‘-'-il'lﬂ a |¢|5.’-'||-'il.'.|i|}'l features of a scene |5]. This makes the rendering result. This way, we only evaluate the newral nevwork where needed anc
qﬂ;"l“l}' GF!hL" MeRF's our put much hl."llil'."r; see below, avadd WASHAE COMPULALIOn &N emply or 0o luded areas

TR RRARTRTAT. FRARARNNNIT,. NN

A

$

==
O ©

Fig.4: Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through
a high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.
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Radiative Transfer Equations - how to describe the variation of the radiance L per unit

distance along &J? The equation of radiative transfer simply says that

, and redistributes energy by scattering.

LY

Differential
radiance

In-scattering

as a beam of radiation travels, it loses energy to absorption,

Out-scattering
& absorption

(w-V)L(z,w) = a,(m)/ Sz, w; = w)L(z,w;) dw; —ay(xz)L(z.w) + Q(x, w)

In-scattering

The ratio between ., and o, controls the fraction of
radiant energy nol being absorbed at each scatlering
and is also known as the single-scattering albedo

» Differential radiance

(@ V)L(z,w) = T2+ TW.©)

dr

s

Out-scattering

& absorption

Extinction cosfficient: o (z) ¢ B

amwwmmwum
known as the oplical density

1]

= lim

T=#l]
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In-scattering - How to describe radiation directional properties? BRDF

The Bi-directional Reflectance Distribution Function
(BRDF) is used to describe the dependence of
‘{. \ reflected radiation on the incident (i) and outgoing (v)
= directions (Nicodemus, 1977).
X A
Differential  In-scattering  Qut-scattering
radiance & absorption

dL (8. & 8. &)
B, &, 0 00 = T 0 o cos 6,40,

s\ O
\gf\l

*&4’&{_

B e e T
.—«-a-;—m N T Lieperse-

cularglird eMect
reCiprocal kernel

Ross-thick kemel

’ .
i Shading (single
Velurma scatensg scamaring) eftect

. sy P B O ven WE F e




Out-scattering & absorption - How to quantify attenuation? Beer’s Law

\ . \ ﬁ% \ v{]

. I
Differential 19 Qut-scattering y
radiance & absorption AV

V

« Forany =,y € V, the attenuation between x and y is

T(x < y) :=exp (— [ ai(r) (lr)
Jlx,y)

+ Aline integral between x and y
c0<T(x+y)<1 forall xand y
« For homogeneous media with o,(x) = o,

Tx < y) = exp(—|l@ — yllov)



Solving Radiative Transfer Equations - Derive Integral form of RTEs

\/ w

. w
oV

Ty /,",‘\ >

) 2

Attenuation In-scattering

hizw)
Lz, w) = / T(r & x) [a,(r) / fp(r,wi = w)L(r,w;) dw; + Q(r.w)] dr

JO
+T(xpy & ) L(zpy,w) wWhere r:=x — Tw
Attenuation Boundary cond.

(The second term vanishes when h(z,w) = +o¢)

All RTMs follow this
general form.

The differences
however, are
essentially due to
the various forms for
the emission and
absorption
coefficients.



Rendering: 3D -> 2D

It does not consider the following Image plane
factors:

1. The light source and its geometry
2. The in-scattering?

3. The bidirectional reflectance

Volurnetric data

distribution function A DVR assigns color (¢ ) and opacity (a,)
. . MIP usars mandip

4. The influence of the properties of Observer

the volume, e.g., biochemical

properties

Concept of Volume Rendering

Discretized
Cloud, swoke, fog, “Volume”

Sample ~
P

What we see @

= Mixed samples



Improve Neural radiative field for
Remote Sensing

® Encoder should output properties of the media, not just
density and color.

® Decoder should integrate the properties of the media,
e.g., biochemical properties, into radiative transfer, via
RTMs, such as Prosail?
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