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(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



Machine Learning (ML) Approaches
All previous approaches assume that radiative transfer model f(.) is known. What if f(.) is unknown? How do we solve inverse problems? 

In this case, we need to collect both X (ground truth) and Y (remote sensing data) to build X and Y pairs, i.e., {(X j,Yj) | j=1,2,...,T}, based on 

which we establish the inverse function X=g(Y,θ), where g(.) is a statistical or ML model, which is called empirical model. 

No forward model:    Y = f(X), where f(.) is unknown. 

We need to obtain some remote sensing data Y 

and the associated ground truth data Y for building some (X,Y) pairs, 

to be used as training data to train ML model. 

X1   :          Y1

X2   :          Y2

X3   :          Y3

….

X4   :          Y4

Based on {(Xj,Yj) | j=1,2,...,T}, we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in g(.). Once we know θ, we can establish the inverse function g(.), and use it to estimate the X value of an 

observed Y value by X=g(Y). 

Comparing with the data simulation & ML approach in (4), here the only difference is that the data is not simulated but observed for both X and Y. 

The ML approach is known as data-driven empirical approaches that are more and more widely used in remote sensing.



Deep Learning (DL) Approaches

Deep learning (DL) approaches are also ML approaches, and as such they can be used for data inversion through (4) and (5), 

i.e.,

--- if f(.) is known, we simulate {(Xj,Yj) | j=1,2,...,T} using f(.) and use them to train DL models for obtaining the inverse function 

X=g(Y);

--- if f(.) is unknown, we obtain remote sensing data Y and ground truth data X to build X and Y pairs, i.e., {(X j,Yj) | j=1,2,...,T}, 

and use them to train DL models for obtaining the inverse function X=g(Y);

Based on training data, we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in DL model g(.). Once we know θ, we can establish the inverse function g(.), and use it to

estimate the X value of an observed Y value by X=g(Y). 

Comparing with traditional ML approaches, such as SVM and random forest, the DL approaches, due to their strong modeling 

capability and GPU computation, are more capable of effectively and efficiently learning the complex nonlinear relationship between Y 

and X,  and perform accurate and fast model prediction for estimating X. 



True Inverse Function vs. Approximated Inverse Function

Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function: 

X = t(Y) = f-1(Y)

where  f-1(.) is difficult/impossible to get, and the form of t(.) is usually unknown; t(.) is physical model; 

Approximated inverse function:

X = g(Y) 

Note that g(.) is only an approximation to the true inverse function t(.), and g(.) is empirical model. 

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)



Example Application

●Handwriting Digit Recognition

“2”
Deep Neural

Network

Q1: in this example, what is the observation Y?

Q2: what is underlying variable X that you try to estimate?

Q3: do you have a forward model? 

Q4: how do you obtain your inverse function? Is this inverse model/function a physical model?



Inverse problem

“2”
Deep Neural

Network

Forward model: Y = f(X)

(1) Y: Digital image
(2) X: Image identity, i.e., the digit value in the image

Inverse model:          X = g(Y, θ) 

where g(.) is an unknown inverse function with unknown model parameter θ. 

Knowledge, data and prior information? 
--- Knowledge f(.) too complex and nonlinear, unknown; true inverse function X = t(Y)=f-1(Y) unknown

---- Data (X, Y) pairs abundant;
---- Prior information (e.g., spatial prior) ambiguous; pixels are spatially correlated to form the digit signature; 



Handwriting Digit Recognition
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Example Application

●Handwriting Digit Recognition R256

Deep Neural
Network “2
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Element of Neural Network 

…

bias

Activation 
functionweights

Neuron
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Example of Neural Network 

Sigmoid Function
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Softmax

●Softmax layer as the output layer

Ordinary Layer

In general, the output of 
network can be any 
value.

May not be easy to 
interpret 



Softmax

●Softmax layer as the output layer

Softmax Layer
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How to set network parameters
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Inverse problem

“2”
Deep Neural

Network

Inverse model:          X = g(Y, θ) 

where g(.) is an unknown inverse function with unknown model parameter θ. 

Now, the first “unknown” is known, because we assume that g(.) can be expressed 

as a neural network. 

How do we address the second “unknown”? 



Training Data

●Preparing training data: images and their labels

Using the training data to find 
the network parameters.
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Gradient Descent

Assume there are only two 
parameters w1 and w2 in a 
network.

The colors represent the value of C.

Error Surface



Gradient Descent

Eventually, we would 
reach a minima …..



Local Minima

●Gradient descent never guarantee global minima 

Reach different 
minima, so different 
results



Besides local minima ……

cost

parameter space

Very slow at the 
plateau

Stuck at local minima

Stuck at saddle point



In physical world ……

●Momentum

How about put this phenomenon 
in gradient descent?



Momentum

cost Movement = 
Negative of Gradient + Momentum 

Gradient = 0

Still not guarantee reaching 
global minima, but give some 
hope ……

Negative of Gradient
Momentum
Real Movement



Do we really need a global optimum? 

“2”
Deep Neural

Network

Inverse model:          X = g(Y, θ) 

where g(.) is an unknown inverse function with unknown model parameter θ. 

True inverse function X = t(Y)=f-1(Y) unknown;

Use approximated inverse function X = g(Y), where the form of g(.) is expressed as a neural network;

Use data pairs to fit X = g(Y, θ), in order to estimate θ; 

The “goodness” of  θ depends on the “goodness” of g(.): 

---- if g(.) is very close to t(.), then we probably want a global optimum according to g(.) standard is useful;
---- if g(.) is strongly biased, and very different from t(.), then the standard for estimating θ is also biased; 



Mini-batch
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Mini-batch

Original Gradient Descent With Mini-batch

unstable

The colors represent the total C on all training data.



Mini-batch
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True inverse function vs. approximated inverse function

Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function: 

X = t(Y) = f-1(Y)

where  f-1(.) is difficult to get and 

the form of t(.) is usually unknown;  

Approximated inverse function:

X = g(Y) 

Note that g(.) is only an approximation to the true inverse function t(.)

Appropriate fitting: when the complexity of g(.) is close to t(.);

Overfitting: when the complexity of g(.) is larger than t(.);

Underfitting: when the complexity of g(.) is smaller than t(.);

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following 

objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)



How do you choose a good g(.)?

Try different models, g1(.), g2(.), …, gn(2), and select the one that with 
highest accuracy on the validation set. 



Overfitting vs. Underfitting

Overfitting: 

---- ML model is so flexible and complex that it accommodates the noise effect in the training data and treats 
it as signal, and the learnt noise characteristics cannot generalize well to the test data;

---- very high training accuracy but low validation/test accuracy; small Bias but big variation in prediction;

Underfitting: 

---- ML model is so simple and rigid that it does not has enough capacity to accommodate signal in the 
training data, and the learnt biased/parcial information cannot generalize well to the test data;

---- low training accuracy & low validation/test accuracy; big Bias but small variation in prediction;



Trade-off between Bias and Variance

True inverse function: X = t(Y) = f-1(Y) unknow;

Approximated inverse function:  X = g(Y) is only an approximation to t(.);

Appropriate fitting: when the complexity of g(.) is close to t(.);

Overfitting: when the complexity of g(.) is larger than t(.);

Underfitting: when the complexity of g(.) is smaller than t(.);

Bias is the difference between the average prediction of our model and the true value which we are 

trying to predict.

Variance is the variability of model prediction.

Why increasing model complexity lead to small bias in prediction? 

---- increasing model complexity -> g(.) to be universal approximator -> stronger 
accommodating/modeling capability to learn the genuine nonlinear relationship between X and Y in X 
= t(Y) -> less bias;

Why increasing model complexity lead to larger variance in prediction? 

---- increasing model complexity -> g(.) to be universal approximator -> stronger 
accommodating/modeling capability to learn both the genuine nonlinear relationship between X and Y 
and irrelevant factors (i.e., noise and even errors in the data) -> larger variance;

Why decreasing model complexity lead to larger bias in prediction? 

Why increasing model complexity lead to smaller variance in prediction? 



Training error vs. test error as model complexity 
changes



Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

overfittingunderfitting

Preventing
Overfitting

Improve the Network

Better optimization 
Strategy



Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/



Convolutional neural network (CNN)



How does CNN work in digit recognition?



Max pooling layer



Fully connected layer



DL frameworks
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