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Key Canopy RTMs

(1) PROSPECT Model: Describe leaf reflectance and transmittance spectrum as a
function of some parameters, e.g., chlorophyll content and water
content in leaves;

(1) SAIL Model: Describe canopy reflectance spectrum as a function of some
e S USIII[g [l parameters of canopy, e.g., LAI, solar angle;

(1) PROSAIL Model: PROSAIL = POSPECT + SAIL, a function of both
and [oJ[eJesVSIEVS Il parameters of leaves and canopy;



PFO S p eCt M ) d el (Allen et al. 1969, Jacquemoud and Barret, 1990)

Leaf
reflectance

PROSPECT

Leaf
transmittance

V
\

H
1111
ff

INNEENE

(%) Prospect is a [FEIEEMRENY that describes
the

(400nm to 2500nm) of leaves as a function of
some leaf biochemical parameters, i.e.,

Leaf structure parameter N,

chlorophyll a + b concentration (Cab) (ug/cm2),
equivalent water thickness (Cw) (cm), and

dry matter content (Cm) (g/cm2).

(2) Prospect represents leaf as one or a stack of
several absorbing plates with rough surfaces
(equivalent to isotropic scattering).

mplamsl http://photobiology.info/Jacq_Ustin.html

\

INNNNNEEN

)

\

ISNENNNNN

i plates

AL
ALY

\\\K\E}KR



PROSPECT:

Chlorophyll a + b concentration (Cab)

Equivalent Water Thickness (Cw)

Leaf structure parameter N Drv Matter Content (Cm)

PROSPECT
!

Hemispherical Leaf Reflectance and Transmittance Spectrum




Sail Model (W. VERHOEF, 1984, 1985)

Radiative transfer in plant canopies, i.e. transmission,
absorption and scattering (Kattenborn, 2018)

(1) Sail is a [e=hleJoACCIMESINY, that describes the

(400nm to 2500nm) of Canopy
as a function of some biophysical and geometric
parameters, i.e.,

Canopy structural parameters (i.e., Leaf Inclination Angle
and LAl)

Soil spectral reflectance,

lllumination and acquisition geometry (i.e., Zenith Solar
Angle, Zenith and Relative Azimuth angles) and Fraction
of Diffuse lllumination (skyl, also called an atmospheric
parameter)
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Sall;

Canopy Parameters: LAI Leaf Inclination Angle (6,)

View & lllumination Parameter:

Zenith and Relative Azimuth angles (8,, w,)

Zenith Solar Angle (6.)

Eraction of Diffuse Illumination (skyl)
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SAIL

Y
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Soil Spectral Reflectance (p,))

Canopy Bidirectional Reflectance




Prosail = Prospect + Sall wermoetetal. 2007

\ | 7 Sun(zenith, azimuth)
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= Canopy-level RT with
i;j Canopy reflectance leaf-level RTVE
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A L. Canopy = - : & g (2) Prosail has 14 input
g -y Leaf PY = 1D turbid medium 3 o arameters, including both
SPectra (PROSPECT) e v - . -
Soil optical properties Leaf inclination distribution % g b!OCp]emICBI.l t _and
551 = Leaf Area Indey Sg iophysical parameters;
¢ 1 Sun-Observer- S T T T T 7T
§§ : f\ , €rGeometry tts, tto, psi 500 1500 250 (3) Prosail outputs the
e o _ wavelengih [nm] bidirectional reflectance of
e Soil Properties canopy, from 400 to 2500

nm in 1 nm increments.

Prosail = Prospect + Sail (Kattenborn, 2018)



Prosail = Prospect + Sall

View & lllumination Parameter: L_Z€enith and Relative Azimuth angles (68,, w,) Zenith Solar Angle (8.)

Eraction of Diffuse Illlumination (skyl)
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Remote Sensing System Overview
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REFLECTIONS

Area

Forward model:
Y =f(X)
(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels,
chlorophyll content in leaves, leaf area index/density;

Inverse model:
X=g(Y, 0)

where g(.) is an [IEKESHE inverse function with [KHGHE

model parameter 6.

Why estimating X is difficult?

--- Knowledge f(.) complex, biased, highly nonlinear,
with large uncertainty;

---- Data (X, Y) pairs limited, poor quality;

---- Prior information (e.g., spatial prior) ambiguous;



f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form no no Yes, estimate X no no no

known, but with some unknown and U together

parameters U

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, no yes? Yes? Use (X,Y) to yes? Yes, use both Yes, use both

can accommodate both? estimate parameters simulated and observed simulated and observed

in f(.) data data
Can use prior information? e.g., no Yes? Use value prior for Yes? Use value prior of Yes, Use value priorin sampling Yes, spatial prior in Yes, similar to ML
spatial prior and value prior sampling X in Bayesian estimation and spatial prior in Random fields Random field
approaches

Advantages Knowledge | Knowledge-driven; Knowledge-driven; Knowledge-driven; Data-driven; Strong modeling
-driven; Intuitive, easy, estimate U; flexible; continuous fitting; flexible; Classic; capability;
Simple, discrete fitting; Efficient for simple good inter/extrapolation; automatic feature
easy f(.) in convex faster than LUT learning;

problems

Disadvantages Unrealistic; | Sensitive to Rely on efficiency Overfitting and underfitting | Weak modeling Overfitting and
rely on accuracy of f(.), of nonlinear solver; risk to simulated data; capability; Rely on underfitting; Black-
simple f(.) similarity metrics, Slow; Local difficult model selection; “good” engineered box;

sampling density optimum; Sensitive to accuracy of f(.), features; Black-box;

and range; slow if
LUT is large; bad for
extrapolation;

similarity metrics, sampling
density and range;

Overfitting, underfitting;
Feature and model
selection is difficult and
slow
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Figure 2. Systematic literature review flow chart.



8. Variable Retrieval Methods

Researchers, who used the PROSAIL model for biophysical and biochemical variable retrieval,
applied the following approaches:

(a) parametric: indirect use of the model by building an arithmetic combination of two or more
bands (=simple ratio or orthogonal VIs) and relating it to the variable of interest (these parametric
models are then applied to real data, see also introduction);

(b) radiometric-data driven (i): numerical iterative optimization techniques;

(c) radiometric-data driven (ii): look-up tables (LUTs);

(d) hybrid methods: combining a non-linear, non-parametric statistical approach with the physically
based PROSAIL model. (i): ANNs and (ii): other machine l:;'arnim’: regression algorithms, such as

GPR or SVM.
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Figure 6. Variable retrieval methods of all evaluated studies involving the PROSAIL model. Parametric
regression refers to vegetation indices. The absolute number of studies using the respective algorithm Figure 7. Temporal development of applications of different variable retrieval methods involving the

is indicated. PROSAIL model from 1992 to 2017,




(a)Parametric Approach
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Figure 6. Variable retrieval methods of all evaluated studies involving the PROSAIL model. Parametric
regression refers to vegetation indices. The absolute number of studies using the respective algorithm
is indicated.
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Figure 7. Tomporal development of applications of different variable retrieval methods involving the
PROSAIL model from 1992 to 2017,

Based on Forward model Y = f(X):

Step 1: Use Prosail model to simulate (Xi, Yi) pairs;

Step 2: Extracted vegetation indices (VI) from {Yi}, and build (Xi, VIi) pairs;

Step 3: Build linear regression model X=g(VI), e.g., Xi=a*VI1+b*VI2+c,
estimate parameters 6={a,b,c}, by J(8) = 3 ||Xi-g(VI)||, 8 = min J(8)

Step 4: Once 6 is known, given Y->VI, use X=g(VI) to estimate X

Popularity and Trend:

Very popular. More than one third of all studies use this approach, as shown
in Fig. 6. But, it has a decreasing tendency, as indicated by Figure 7.

Advantages:

Low calculation complexity, high computation power and speed, while still
delivering meaningful results, e.g., Broge et al. 2000. Popular Vls includes
ratio vegetation index (RVI) and normalized difference vegetation index
(NDVI),

Disadvantages:

(1) Lack of novelty, because VI have been exhaustively exploited. (2) VI has
low transferability. (3) VIs make only limited use of the full spectral resolution
available. (4) essentially knowledge-driven feature engineering, so difficult to
determine the “best” feature subset from all available Vls.



(1) Direct (2) LUT approach (3) Numerical (4) Simulation & ML (5) ML (6) DL
inversion Approach

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form no no Yes, estimate X no no no

known, but with some unknown and U together

parameters U

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, no yes? Yes? Use (X,Y) to yes? Yes, use both Yes, use both

can accommodate both? estimate parameters simulated and observed simulated and observed

in f(.) data data
Can use prior information? e.g., no Yes? Use value prior for Yes? Use value prior of Yes, Use value priorin sampling Yes, spatial prior in Yes, similar to ML
spatial prior and value prior sampling X in Bayesian estimation and spatial prior in Random fields Random field
approaches

Advantages Knowledge | Knowledge-driven; Knowledge-driven; Knowledge-driven; Data-driven; Strong modeling
-driven; Intuitive, easy, estimate U; flexible; continuous fitting; flexible; Classic; capability;
Simple, discrete fitting; Efficient for simple good inter/extrapolation; automatic feature
easy f(.) in convex faster than LUT learning;

problems

Disadvantages Unrealistic; | Sensitive to Rely on efficiency Overfitting and underfitting | Weak modeling Overfitting and
rely on accuracy of f(.), of nonlinear solver; risk to simulated data; capability; Rely on underfitting; Black-
simple f(.) similarity metrics, Slow; Local difficult model selection; “good” engineered box;

sampling density optimum; Sensitive to accuracy of f(.), features; Black-box;

and range; slow if
LUT is large; bad for
extrapolation;

similarity metrics, sampling
density and range;

Overfitting, underfitting;
Feature and model
selection is difficult and
slow




(4) Data Simulation & Machine Learning (ML) Approaches

If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(X;,Y;j) | j=1,2,...,M}. Instead of using LUT for
data inversion, we can use ML approaches to learn the inverse function, i.e., X=g(Y), and use this inverse function to estimate the X value
of an observed Y value.

Forward model: Y ={(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invertible.

Based on Y=f(X), similar to LUT, we simulate the following X and Y pairs. RTM input data

Xl . Y]_
X5 . Y,
X3 : Ys
T RTM synthetic e ™
X4 : Y4 data (LUT) iR S
) Trained Map of variable
"’"'“' s Sening (advanced) of interest
eeny regression model (eg. LCC, LAY
Validation

where 6 is the unknown parameters in the inverse function g(.) which is a statistical model or machine learning model. Once we know 6, we can
establish the inverse function g(.), and use it to estimate the X value of an observed Y value by X=g(Y).

Comparing with the LUT approach that is essentially discrete interpolation, the ML approaches can learn a continuous inverse function g(.) using the
simulated data, and thereby they theoretically can achieve more accurate estimation. Moreover, ML approaches tend to be faster because they do
not need to do LUT searching for every observation.



(b) Numerical Iterative Optimization Approach
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Figure 7. Temporal development of applications of different variable retrieval methods involving the
PROSAIL model from 1992 to 2017,

Based on Forward model Y = f(X) and a spectra observation Y;

Step 1: Build an objective function J(X;) = ||Y-fCX)|

Step 2: Estimate X; by X; = min J(X;) using iterative nonlinear optimization
approaches, e.g., gradient descent, Markov chain monte carlo (MCMC), etc.

Popularity and Trend:

Not popular and decreasing trend (Bicheron and Loroy, 1999; Goel and
Thompson, 1984)

Advantages:

Does not need data simulation based on forward model;

Can directly estimate X; given spectra observation Y;;

Disadvantages:

(1) high computational loads;

(2) high risk of converging to local minima;



(1) Direct (2) LUT approach (4) Simulation & ML (5) ML (6) DL
inversion

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form no no Yes, estimate X no no no

known, but with some unknown and U together

parameters U

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, no yes? Yes? Use (X,Y) to yes? Yes, use both Yes, use both

can accommodate both? estimate parameters simulated and observed simulated and observed

in f(.) data data
Can use prior information? e.g., no Yes? Use value prior for Yes? Use value prior of Yes, Use value prior in sampling Yes, spatial prior in Yes, similar to ML
spatial prior and value prior sampling X in Bayesian estimation and spatial prior in Random fields Random field
approaches

Advantages Knowledge | Knowledge-driven; Knowledge-driven; Knowledge-driven; Data-driven; Strong modeling
-driven; Intuitive, easy, estimate U; flexible; continuous fitting; flexible; Classic; capability;
Simple, discrete fitting; Efficient for simple good inter/extrapolation; automatic feature
easy f(.) in convex faster than LUT learning;

problems

Disadvantages Unrealistic; | Sensitive to Rely on efficiency Overfitting and underfitting | Weak modeling Overfitting and
rely on accuracy of f(.), of nonlinear solver; risk to simulated data; capability; Rely on underfitting; Black-
simple f(.) similarity metrics, Slow; Local difficult model selection; “good” engineered box;

sampling density optimum; Sensitive to accuracy of f(.), features; Black-box;

and range; slow if
LUT is large; bad for
extrapolation;

similarity metrics, sampling
density and range;

Overfitting, underfitting;
Feature and model
selection is difficult and
slow




(2) Numerical Approaches

If the radiative transfer model f(.) is known, and we have an remote sensing observation Y, we can use the numerical
approach to estimate the associated X.

Forward model: Y =1(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and un-invertible.
Based on some observations {Y}, we can build an objective function:

J(X) = Y-f(X)

X =min J(X)

We try to find X that through f(.) can generate output whose value is very close to the value of Y.

Because the forward model f(.) contains knowledge and physical rules, f(.) is usually called physical model.



(c) LUT Approach
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Figure 6. Variable retrieval methods of all evaluated studies involving the PROSAIL model. Parametric
regression refers to vegetation indices. The absolute number of studies using the respective algorithm
is indicated.
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Figure 7. Tomporal development of applications of different variable retrieval methods involving the
PROSAIL model from 1992 to 2017,

Based on Forward model Y = f(X):
Step 1: Use Prosail model to simulate (X;, Y;) pairs and build a LUT;

Step 2: Given an observed Y value, we search the LUT to identify the row whose Y;
value is the closest to the observed Y value.

Step 3: The X value associated with Y;j is treated as the estimated X value of Y.
Popularity and Trend:

Extensively used in the last decades; Combal et al., 2002; Knyazikhin et al, 1998;
Weiss et al., 2000

Increasing trend, as indicated by Figure 7.

Advantages:

Much faster than iterative optimization approach;

Provide possibility to overcome the problem of local optima;
Allow the integration of prior information into the building of LUT;
Disadvantages:

(1) searching algorithm is computationally inefficient, especially when the number of
spectral channels is high; (2) a discrete optimization approach, cannot perform
accurate interpolation and extrapolation;



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, similar to ML

Strong modeling
capability;
automatic feature
learning;

Overfitting and
underfitting; Black-
box;



(3) LookUp Table (LUT) Approaches

If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(X;,Y)) | j=1,2,...,M}, based on
which we can build a LUT and use it to estimate the X value of an observed Y value.

Forward model: Y =1(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invettible.

Based on Y=f(X), we build a LUT by first sampling X; uniformly within a range [A,B] (A and B are respectively the theoretical min and
max value of X), and then obtaining the associated Y; value by Y=f(X;).

X4 : Y,
X5 : Y,
X3 : Y5
Xa : Y,

Comparing with the numerical approaches, the LUT approach is simpler and has theoretical advantages such as being able to find the
global optimum in the parameter space, and thereby the LUT approaches have been widely used in solving remote sensing inverse
problems.



(d) Machine Learning Regression Algorithm (MLRA)
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PROSAIL model from 1992 to 2017,

Based on Forward model Y = f(X):
Step 1: Use Prosail model to simulate (Xi, Yi) pairs;

Step 2: Build nonlinear regression model X=g(Yi), e.g., ANN, SVR, Gaussian
process regression (GPR), by J(8) = ¥ ||Xi-g(Yi)||, 8 = min J(8)

Step 3: Once 6 is known, given Y, use X=g(Y) to estimate X

Popularity and Trend:

Very popular (ANN + MLRA) in Fig. 6; Fast growing trend (ANN + MLRA) in
Fig. 7;

Advantages:

Comparing with (a) parametric approach, (d) is nonlinear, uses all spectral
channels and does not need to extract VIs as model input;

Comparing with (c) LUT approach, (d) allows continuous interpolation and
extrapolation;

Disadvantages:

Low model complexity comparing with deep neural networks;

Relies on feature engineering to generate discriminative spatial-spectral
features;



(1) Direct (2) LUT approach (3) Numerical (4) Simulation & ML (5) ML (6) DL
inversion Approach

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form no no Yes, estimate X no no no

known, but with some unknown and U together

parameters U

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, no yes? Yes? Use (X,Y) to yes? Yes, use both Yes, use both

can accommodate both? estimate parameters simulated and observed simulated and observed

in f(.) data data
Can use prior information? e.g., no Yes? Use value prior for Yes? Use value prior of Yes, Use value priorin sampling Yes, spatial prior in Yes, similar to ML
spatial prior and value prior sampling X in Bayesian estimation and spatial prior in Random fields Random field
approaches

Advantages Knowledge | Knowledge-driven; Knowledge-driven; Knowledge-driven; Data-driven; Strong modeling
-driven; Intuitive, easy, estimate U; flexible; continuous fitting; flexible; Classic; capability;
Simple, discrete fitting; Efficient for simple good inter/extrapolation; automatic feature
easy f(.) in convex faster than LUT learning;

problems

Disadvantages Unrealistic; | Sensitive to Rely on efficiency Overfitting and underfitting | Weak modeling Overfitting and
rely on accuracy of f(.), of nonlinear solver; risk to simulated data; capability; Rely on underfitting; Black-
simple f(.) similarity metrics, Slow; Local difficult model selection; “good” engineered box;

sampling density optimum; Sensitive to accuracy of f(.), features; Black-box;

and range; slow if
LUT is large; bad for
extrapolation;

similarity metrics, sampling
density and range;

Overfitting, underfitting;
Feature and model
selection is difficult and
slow




Deep learning in vegetation remote sensing

Concerning biochemical and structural plant traits, an interesting approach is to train CNNs with simulated data
derived from physicallybased models. Such hybrid approaches, i.e. coupling statistical and process-based
models, may not only provide data for training but also enable including priors and realistic constrains in model
training (Reichstein et al., 2019).

For instance, Annala et al. (2020) trained a ]l with reflectance spectra simulated with the radiative transfer
model (RTM) EIM@IR (Maier et al., 1999). Although SLOP is a relatively simple leaf reflectance model, Annala et al.
(2020) demonstrated promising tests of this hybrid inversion method for UAV hyperspectral acquisitions of forest
canopies. More sophisticated RTMs may allow to produce more robust models, e.g. PROSAIL (Jacquemoud et
al., 2009), enabling to account for bidirectional reflectance effects in plant canopies, whereas | I NS
B (North, 1996) or DART (Gastellu-Etchegorry et al., 1996) may provide interesting sources for generating
synthetic training data for |l (see Section 3.2 for details on 1D-, 2D- and 3D-CNNs).

Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation re mote sensing. ISPRS
Journal of Photogrammetry and Remote Sensing, 173, 24-49.

Reichstein, M., Camps-Vails, G., Stevens, B., Jung, M., Denzler, J., Car-valhais, N., Prabhat, 2019. Deep learning and process understanding for
data-driven Earth system science. Natlifeé 566 (7743), 195—204. https://doi.org/10.1038/s41586-019- 0912 (cit. on pp. 6, 22, 24, 57, 60).



Deep Learning (DL) for Inverting Prosail Model

(1) Use DL as a regression technique to directly obtain the inverse function X=g(Y)
based on simulations from the Prosail model;

(2) Use DL as an unsupervised feature extraction approach to learn efficient features,
which can be used boost the LUT approach;



LUT Inversion of PROSAIL using Hyperspectral Imagery

Advantages:

----The possibility for obtaining global optima in the parameter space;
----Strong model transferability;

----Good accuracy and precision;

Disadvantages:

----Large computational cost due to high-dimensionality and spectral redundancy;
----Difficult to define a similarity measure for high-dimensional hyperspectral data;

Current Dimensionality reduction approaches:

----Knowledge-driven feature engineering approach, e.g., vegetation indices;
----Difficult to select subset of features from all possible features;



Feature Engineering vs. Feature Learning

« Feature Engineering

----Knowledge-driven, requires knowing what makes “good” features;
----Does not handle data variability very well;

----Lower accuracy in computer vision and machine learning applications;

« [Feature Learning:

----Data-driven, relies on the data to obtain meaningful features;
----Can well adapt to the characteristics of the data,

----Increasing popularity and higher accuracy in many applications;



Research Objectives:
Explore deep learning approach for unsupervised feature learning, such that:

--- features are data-driven;

----features are noise-free;

----features are compact;

----features are extracted using full spectra bands;

----features are non-linear;

----using the features can improve LUT inversion approaches for better satisfying
the operational requirements of incoming big hyperspectral data.



Autoencoder Architecture

Xi f;






Stacked AutoEncoder: Advantages

« Unsupervised feature learning approach which does not requires
training data or prior knowledge of the problem;

« Deep nonlinear feature transformation for better capturing
discriminative information in the spectral domain;

* Features are compact and noise-free;

* Fast due to GPU computation;



________________________________

The Prosail model

LUT

Test spectra — Trained SAE LUT

/\

| Test feature in SAE domain

LUT in SAE domain | '

Matchi
Step 3: E‘j

Inversion results

Overview of
the Methodology

e Step 1. LUT generation;
e Step 2: Learning SAE features;

e Step 3: LUT inversion of Prosail
in SAE feature domain;
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Simulated study

« Step 1. Simulate data using the Prosail model, and
generate LUT

« Step 2: Training SAE for feature extraction;

« Step 3: Test LUT inversion using simulated test data;



Performance variation with the “deepness”
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Experiments on real UAV hyperspectral
data

* Step 1. Simulate data using the Prosail model, and generate LUT

« Step 2: Training SAE for feature extraction;

« Step 3: Perform LUT inversion of real hyperspectral image collected in
2018 by the Headwall UAV hyperspectral system over a vineyard near
Toronto;
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Processing time for a 512-by-512 image

272 channels under CPU 28.23 minutes

50 SAE features under GPU 2.01 seconds



Conclusions:

« The SAE features has potential to improve both the
accuracy and computation efficiency of the LUT inversion of
Prosail model;

 The proposed LUT inversion in SAE feature domain can
better handle the challenges of big hyperspectral data in
many vegetation monitoring applications;
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Abstract: The upcoming satellite mission EnMAP offers the opportunity to retrieve
information on the seasonal development of vegetation parameters on a regional scale based
on hyperspectral data. This study aims to investigate whether an analysis method for the
retrieval of leaf area index (LAI), developed and validated on the 4 m resolution scale of six
airborne datasets covering the 2012 growing period, is transferable to the spaceborne 30 m
resolution scale of the future EnMAP mission, The widely used PROSAIL model is applied
to generate look-up-table (LUT) libraries, by which the model is inverted to derive LAI
information. With the goal of defining the impact of different selection criteria in the
inversion process, different techniques for the LUT based inversion are tested, such as
several cost functions, type and amount of artificial noise, number of considered solutions
and type of averaging method. The optimal inversion procedure (Laplace, median, 4%
inverse multiplicative noise, 350 out of 100,000 averages) is identified by validating the
results against corresponding in-situ measurements (n = 330) of LAIL Finally, the best
performing LUT inversion (R* = 0.65, RMSE = 0.64) is adapted to simulated EnMAP data,
generated from the airborne acquisitions. The comparison of the retrieval results to upscaled
maps of LAI, previously validated on the 4 m scale, shows that the optimized retrieval
method can successfully be transferred to spaceborne EnMAP data.



Data

1. Prosail simulation of AVIS-3

2 strategies. The airborne imaging spectrometer AVIS-3 (Airborne Visible and Near Infrared Table 1. Airborne dats scquisitions over the Newsling test site.

* Spectrometer, LMU, Munich, Germany), developed at the Department of Geography of the Ludwig iﬁ?* m; Sum ﬁ"“‘" 5‘%—
Maximilian University (LMU) [19], was used to perform four imaging flights during the course of the :SMH-‘:; HySpe ;: o
vegetation period of 2012 over a 12 km? large test site in Southern Germany (Neusling, Lower Bavaria, 16 Jung AVIS-3 bt 156
central coordinates: 48.69 N, 12.87 E). The seasonal campaign was complemented by two additional u]m AvIES i iss
acquisitions from the airborne sensor HySpex, which is operated by the German Aerospace Center
(DLR) [20].

In order to validate the methods developed for the retrieval of biophysical parameters, an extensive
field campaign was carried out alongside the airborne data acquisitions, resulting in more than 330 valid
LAI measurements of five different crops. These represent the major crops cultivated in the arca (winter
wheat, winter barley, rapeseed, maize, sugar beet). The LAI measurements were conducted non-destructively ‘ ¢
using LAI-2000 plant canopy analyzers (Li-Cor, Lincoln, NE, USA), applying a diagonal sampling  [#8 ‘_ ” ~ o '
pattern (two reference and cight canopy measurements) within elementary sampling units corresponding g p’ \(} e\ {
to the geometric resolution of the airborne data. s o Z

1. Prosail simulation of Enmap
2. AVIS-3 simulation of Enmap




Preprocessing of Airborne data - why additional channels?

The preprocessing of the airborne data, which also was carried out at LMU for the AVIS-flights,
includes analysis of the spectral properties, sensor calibration, geometric correction, spatial data fusion,
radiometric calibration and finally spectral data fusion. Using in-situ measurements conducted with a
calibrated ASD FieldSpec 4, the raw data was finally calibrated to bottom of atmosphere (BOA)
reflectance by empirical alignment. Having gone through all corrective steps, AVIS-3 data consists of
197 spectral bands, covering a spectral range from 477-1704 nm at a spectral resolution of 5.8 nm
(<994 nm) and 6.6 nm (>994 nm), respectively. The ground sampling distance (GSD) in this case was
4 m. An important step of the preprocessing is the consideration of viewing angle information. For this
purpose, sensor zenith and azimuth angle were stacked to the spectral data as additional bands. If this
meta information is available in conjunction with the respective solar zenith angle of the acquisition
time, the illumination geometry can be traced for each pixel.

The HySpex data was acquired and preprocessed by DLR, atmospherically corrected by the use of
ATCOR [21], and provided as BOA reflectance with a GSD of 4 m, equal to the AVIS-3 data. The
spectral properties of HySpex were adapted to those of AVIS-3, according to the spectral response
functions of the latter, which is assumed to correspond to a Gaussian distribution around the center
wavelength of each band. This results in a full width half maximum (FWHM) equal to the sampling
interval of the sensor. Further, sensor zenith and azimuth information was added as separate bands to the
HySpex data in order to conform to the specifications of the processed AVIS-3 data.



AVIS-3 simulation of EnMap data - why radiance to DN value?

To examine the applicability of the methods investigated in this study to the upcoming
EnMAP-Hyper Spectral Imager (HSI), the airborne hyperspectral datasets of the study site had to be
modified to meet the spatial, spectral and radiometric properties of the future satellite sensor. For that

purpose, Segl er al. [22] have developed the EnAMAP End-to-End Simulator (EeteS), by which the image
data from the multiseasonal campaign was converted into simulated EnMAP data. During forward
simulation, EeteS uses several modules for the simulation of atmospheric effects and sensor properties
(radiometric, spectral and spatial) and converts the airborne reflectance to realistic raw top of atmosphere
(TOA) data. It is coupled with the backward simulation tool encompassing on-board Ll-cahbratlon of
non-linearity and dark current correction as well as absolute radiometric calibration. The radiometric

module converts the data from at-sensor radiance to digital numbers by taking into account a range of
influence parameters, such as integration time, quantum efficiency (QE), different kinds of noise,
infrared background signal, high/low gain modes for the VNIR detector, variable offsets and gains, as

well as an individual non-linear response for each detector element. This 1s an important step, because

these parameters define the sensor-dependent noise, as specified by the detector manufacturer. The
subsequent L2-processors of co-registration, atmospheric correction and ortho-rectification complete the
tool. This allows the generation of artificial satellite data, which incorporates the instrumental and
environmental configurations of the future EnMAP-HSI.

It should be noted that the EnMAP simulations used in this study are restricted to spectral information
within the spectral range of AVIS-3, i.e., from 471-1753 nm. Although the simulation includes the full
EnMAP spectral range (420-2450 nm), all bands in the simulated data below 471 and beyond 1753 nm
contain no information.



Prosail simulation of AVIS-3 - Influence of discretion level?

The quality of a LUT depends on the range, discretion levels, number of parameter configurations as
well as on an optimal Search strategy [24]. If the distance between the discretion levels is too far or the

dimension is too low, the LUT inversion may lead to suboptimal solutions [23]. Similar to neural
networks, which have to be trained before parameter retrieval, an advantage of the LUT is that a large
amount of the computing time is completed before the actual application. This antecedent calculation is
based on various input parameters [24]. In contrast to numerical optimization and also to ANNSs, the LUT
approach admits a global search and is in this way not in danger of being trapped in local minima [25].

Numerous studies, e.g., [26,27], showed that the LUTs are often more robust and generate higher
accuracies compared to other RTM inversion approaches. Moreover, LUTs have the advantage that they
represent a relatively simple method, their content being precisely defined. In this way, intermediate

results can also be considered as comprehensive, while neural networks are often criticized as being black
boxes [24]. In order to overcome these drawbacks, recently also machine learning algorithms that follow a
gray box behavior and thus provide more transparency are emerging [28]. Compared to iterative optimization
algorithms, the LUT method is significantly less time consuming [29]. However, it is not as fast as a neural
network. Due to its advantages, the LUT approach was chosen to serve as the inversion technique for



Prosail simulation of AVIS-3 - Influence of LUT size, why Gaussian?

reflectance values stored in column direction, the EUT alSo includes the ¢o)
Subscqucntly the size of the LUT in row dlrecuon was spccnﬁcd defining the number of reflectance

spectra available for the comparative analysis with measured reflectance signals. If the size is too small,
the estimation accuracy may suffer. By contrast, a too large number of modeled spectra would lead to
an increase in computation time, without adding value in terms of accuracy after a certain accuracy level
has been reached. Weiss er al. [30] investigated the effect of the LUT size on the accuracy of canopy
variables. They tested several LUTs ranging from 25,000-280,000 in row size and found that an LUT

based on 100,000 modeled spectra provides an optimal compromise between model accuracy and Table 2. Disufbition of PROSAIL tapus pecataciers for thi grnatation'of dia LUT.

. . . . . Model Paramet Min M M Std. Dev,
required computer-resources. Based on this finding, we randomly combined the input parameters to the : Teaf chiorophyl M:mm‘m.‘l 5 &
model in 100,000 instances, cach following a distribution within a specific range. Instead of using a “‘;:‘y:‘::::::““‘"ﬁ_‘]‘"" : a2 L

. R R . . ot o ettt G . PROSPECT-Sb g X 5 :
uniform distribution, the input parameters were defined to follow a Gaussian distribution according to Equivalent water thickness fom] 0 005 002 002
¥ S o s . < Leaf mass per unit leaf arca [g'om’) 0 002 0.01 008
their most probable incidence during a growing season in Southern Germany. This procedure has the Structure cocfficicnt [-] | 25 15 [
» . $:ad » A . . Average keafangle | 1 30 0 60 20
advantage that the most likely variable values can be distinguished in finer steps, which increases model e Leof arce iadex (/] o 3 35 2%
: . Hot spot [-) 0 1 045 06
accuracy. However, the accuracy for less likely variable values may suffer from less frequent cases. The 5ol confBicied 4 ” ) py N

Gaussian distribution was chosen over other distribution functions, since the aim of this study is to

estimate parameters within a growing period. It is thus not expected that the variables under examination,
e.g., LAl show very rapid increases, or even extreme values, but rather that they develop gradually.
Table 2 shows the range and distribution of each PROSAIL input parameter as defined in this study. The
individual settings are based on experiences and empirical values from several studies [31-33]. These
values only were slightly modified to guarantee that the expected variability of the target variables
expected during one growing season was covered. The selection of the parameters stored in the LUT
therefore was independent from in-situ observations. It should be noted that due to its negligible effect,
the ratio of diffuse to total incident radiation was constantly set to 10%.



Prosail simulation of AVIS-3 - How to account for Geometry

Influence?

During this step, parameters describing the illumination geometry, i.e., solar zenith angle, observer
zenith and azimuth angle, were fixed and are therefore identical in each of the 100,000 combinations.
Nevertheless, due to varying viewing angles in the 2012 images. the anticipated BRDF effects must be
taken into account. This iS necessary because different angle settings affect reflectance in a
non-negligible fashion. To solve this problem, the LUT was generated repeatedly for several categories
of observer zenith and azimuth angles: The step size of zenith angles was set to 5 covering a range
from —25 °to +25 ©. The required range was determined by the highest and lowest observer zenith angles

in all available images of the 2012 campaign. For the relative azimuth angle, a step size of 10 °in a range

Tahle 1. Airborne data scquisitions over the Neusling test site.

Acquisiibon Date Semsor Sum Lenbth {9 Sum Awimuth (%
28 Apnl AVIS3 42 132
& May HySpex 45 115
25 May AVIS-3 9 236
16 Jume AVIS-3 1 146
12 Angust HySpex 42 133
& September AVIS-3 4% 133

from 0 %180 ®was chosen in order to cover all potential observer angles occurring in the image data. In

order to take the solar zenith angles of the six different flights into account, the steps of calculating the
LUT for each possible observer angle class combination were repeated once more, this time considering
the respective solar zenith angle of each of the six flights. However, four iterations were sufficient,
because for the first and fifth as well as for the second and sixth flights the solar zenith angles were

almost identical (Table 1). It must be noted that topographic effects on illumination geometry could be
neglected due to the flat surface of the test area. As a consequence, the dimension of the generated LUT
library is defined by the product of the biophysical input parameters (7 = 100,000), the observer zenith
angle classes (n = 11), the observer azimuth classes (7 = 19) and the solar zenith angle classes (n = 4),

resulting in a total of 83,600.000 reflectance spectra including their corresponding parameter
specifications being stored in the LUT.




Prosail simulation of AVIS-3 - How to account for Geometry

Influence?

When applying the inversion sequence to an image, the algorithm starts with the identification of the
respective solar zenith angle. The program identifies the first pixel and extracts the observer angle
information, which is stored in the additional bands 198 (zenith) and 199 (azimuth) of the AVIS-3/HySpex
data. The relative azimuth is calculated based on the latter and on the manually supplied solar azimuth

angle. According to the now specified angle information, the corresponding table, equaling the size of
the initial LUT of 100,000 spectra, is loaded from the LUT library. Based on a cost function, a curve

fitting is subsequently performed, whereby best match(es) between the measured spectrum and the
modeled spectra are identified. When completed, the algorithm collects the corresponding metadata of
the best fit(s) and stores it with the equivalent pixel of the output image. The success of the parameter
retrieval thereby depends on certain important selection criteria at various steps within the inversion

sequence. The most critical are the precise choice of the data ranges that are compared, the cost function

applied in the curve fitting process, and the management of the result of the curve fitting. These criteria
are individually investigated in the following.

Tahle 1. Airborne data scquisitions over the Neusling test site.

.-'itq_-hllhu Daie Semuor Sum fenbih l_’ﬁ Sum Arimuih Rj
28 Apnl AVIS-3 42 132
& May HySpex 45 115
28 May AVIS-3 kL 236
16 Jusie AVIS-3 5 146
12 Angust HySpex 42 133
% September AVIS-E 45 158




Prosail simulation AVIS-3 - Why band selection

The first criterion is the selection of bands to be used for the comparison of the measured and
simulated reflectance. Since the quality of reflectance data might differ among the available bands
mostly due to noise, they must be selected wisely to avoid potentially corrupl results. Many studies
(e.g', [34,35]) found that an appropriate band selection, or, alwrnanVely, pec
»ectral bands, leads to an improvement in the inversion quality :
&snmauon. Making an informed selection is, however, not trmal A slralcgy to consider is lhc one
proposed by Darvishzadeh et al. [25], who suggested discarding those wavelengths that are not well
simulated by PROSAIL using an iterative approach, starting with the elimination of the worst modeled
spectral band among all sample plots. The LUT inversion is repeated until all bands show acceptable

accuracies within a user-specified threshold.
In view of the expected spectral capacity of ENMAP, which will provide spectrally contiguous data,
a different approach was applied in this study by neglecting band selection apart from atmospherically

distorted bands. This was based on the assumption that an applied curve fitting would be the more precise
the more bands are considered and is related to the fact that the contiguous spectrum contains more

information, e.g., on specific absorption ranges, than a multispectral dataset. Although the use of all
available bands may provide redundant information when trying to retrieve individual parameters, e.g.,
LAI this method has the advantage that some surface parameters, affecting reflectance in different and
in some cases very small wavelength ranges, can be derived by a uniform method. Consequently, after
excluding the bands located within the atmospheric water vapor absorption range and some bands with

reduced sensitivity, located at the marginal areas of the CCDs, the remaining 146 bands were finally
used in the inversion process.



Prosail simulation AVIS-3 - Why adding noise

A fundamental difference between simulated and measured reflectance, which was gathered by the
use of airborne sensors, is the fact that the latter is affected by uncertainties originating from
measurement inaccuracies and from the preprocessing steps of sensor calibration, geometric correction
and radiometric calibration. On the other hand, the reflectance model might produce uncertainties as
well, which are associated with its complex architecture for the calculation of canopy radiative
transfer [33].

Compensating the uncertainties of both, sensor data and potential model weaknesses, is the reason
for adding noise to the data. The type and amount of noise introduced differs in studies found in the
literature. Bacour ef al. [31], e.g., added 4% white Gaussian noise with no bias to the data. Baret et al. [32],
by contrast, added white Gaussian noise to the reflectance values, which has an absolute value of 0.04.
A combination of both with an additive level of 0.01 and a multiplicative level of 4% was used by Verger
et al. [33]. In a study by Verrelst et al. [36], a systematic approach was pursued, which examined the
effect of adding 0%-30% Gaussian noise to the data in 1% intervals. A modified approach was
investigated by Rivera et al. [37] in which the influence of a multiplicative noise ranging from 0%-50%,
in 2% intervals, was tested.



Prosail simulation AVIS-3 - Why different noises

and multiplicative Gaussian noise as well as a combination of both was used. Of decisive importance for
the amount of noise is the variance (6°) in the Gaussian distribution [36].
Since the impact of multiplicative noise on the reflectance depends on the individual value of each

band, high reflectance values, for example those occurring in the red edge. obtain higher noise values

than low reflectances. However, low reflectance values are typically more prone to noise due to a lower
Additive noise (Equation (1))

light intensity reaching the sensor, which results in a lower signal-to-noise ratio (SNR) for
Rns(R) = Ryim(R) + x(0,0(2)) (n

Multiplicative noise (Equation (2))

band. Therefore, an inverse form of multiplicative noise, having a stronger impact on low
values than on high values, was tested as well. This is achieved by simply subtracting tk

reflectance value at the given wavelengths, which can range from 0-1, from the high RysQ) = Ry (X) X [1 + 2(0,0(1))] 2)
reflectance value of 1. A total of five types of noise were defined for this study and tested  Inverse-multiplicative noise (Equation (3))
their performance. They are described by Equations (1)—(5): RusX) = 1= {[1 = Ry X [1 + x(0,60N)} 3)
Combined noise (Equation (4))
Rps(A) = Ry () % [1 4 2(0,20(0)] + x(0,6(2) (4)
Inverse-combined noise (Equation (5))
Rus() = 1= {[1 = Ry )] x [1 + 2(0,20(1))]} + x(0,0(2)) (3)

where

R,s(A)  simulated reflectance value for band i with noise

Rym(A)  simulated reflectance value for band A

x(0,0)  Gaussian distribution (mean value 0 and standard deviation @)
a(d) uncertaintics within the Gaussian distribution for band 4

In order to account for the fact that a given variance value has a less pronounced effect when applied
as multiplicative noise, it is double-weighted compared to the additive noise factor in the combined methods.



Prosail simulation AVIS-3 - Cost function - Why LP is more robust?

The cost function measures the discrepancies between observed and simulated reflectance values [13] and
therefore serves for the purpose of identifying the combination by which the error between the simulated
data provided by the LUT and the measured reflectance is minimized. Recently, several studies have
investigated the potential of altemative cost functions for the retrieval of best fits between measured and
simulated data (e.g., [36-38]). One of the most common measures in this context is the root mean square

error (RMSE), which has been applied in several studies (¢.g., [23,26,31]). For this reason, it was chosen
as one of the cost functions applied in this study. The widely used least-square estimators (L.2-means)
produce good results, when the underlying assumptions, such as noise is Gaussian, are true [37], Two further
L2-estimators, i.e., Nash-Sutcliffe Efficiency (NSE) [39] and Geman & McClure Estimator (GM) [40],
and a L1-estimator (absolute valuc), which is represented by the Laplace Distribution (LP) [40], were
tested. The NSE is a measure of the mean square error to the observed variance, and is sensitive to large

crrors [39]. Among all cost functions, the very general Laplace Distribution represents the simplest one.
This LI-estimator calculates the distance, or, in other words, the arca, between two spectra. As a result
of its design. outlier values, which in general produce the largest errors, exert a less pronounced influence
on the overall result when compared to the NSE. This advantage is also the case for the GM. However,
this last measure cannot guarantee the identification of a umique best fit [37], which is a general
requirement of a robust M-estimator. The cost functions are described by Equations (6)-(9). It is noted
that in this study, both the RMSE and the NSE are not only used as a cost function, they also support
model validation.
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Prosail simulation AVIS-3 - Cost function - Why LP is more robust?

The cost function measures the discrepancies between observed and simulated reflectance values [13] and
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data provided by the LUT and the measured reflectance is minimized. Recently, several studies have
investigated the potential of altemative cost functions for the retrieval of best fits between measured and
simulated data (e.g., [36-38]). One of the most common measures in this context is the root mean square

error (RMSE), which has been applied in several studies (¢.g., [23,26,31]). For this reason, it was chosen
as one of the cost functions applied in this study. The widely used least-square estimators (L.2-means)
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and a L1-estimator (absolute valuc), which is represented by the Laplace Distribution (LP) [40], were
tested. The NSE is a measure of the mean square error to the observed variance, and is sensitive to large

crrors [39]. Among all cost functions, the very general Laplace Distribution represents the simplest one.
This LI-estimator calculates the distance, or, in other words, the arca, between two spectra. As a result
of its design. outlier values, which in general produce the largest errors, exert a less pronounced influence
on the overall result when compared to the NSE. This advantage is also the case for the GM. However,
this last measure cannot guarantee the identification of a umique best fit [37], which is a general
requirement of a robust M-estimator. The cost functions are described by Equations (6)-(9). It is noted
that in this study, both the RMSE and the NSE are not only used as a cost function, they also support
model validation.
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Prosail inversion of AVIS-3 - why 17,640 inversions?

The in-situ measurements of LAI served as reference, enabling validation by comparing the field
measurements to the retrieved information of the corresponding pixels. In order to incorporate as many
of the above listed selection criteria as possible, an inversion loop was implemented, which is described
in the following.

To find the optimized amount of noise for each type, the variance of the Gaussian distribution
describing the noise was set to 21 different levels, beginning with 0%, which means that no noise was
added, up to a maximum of 5%, 10% or 20%, depending on the noise type. Various ranges were chosen
to take the different weighting that variance has for each noise type into account. In the next step, all
four cost functions (Equations (6)—(9)) were used to search for the best fit between the measured and the
(noisy) simulated data. To find the best strategy for mitigating the ill-posed problem, a total of 21 steps
considering a predetermined number of solutions incorporating multiple solutions (best fits) were
defined and averaged. The first step represents only the overall best fit, the second solution represents
the average of the best 50 fits. The incorporation of additional fits is continued with step sizes of 50
additional spectra per solution until the last step, the 21st, is reached, which then takes 1000 spectra, i.e.,
1% of the complete LUT, into account. When averaged, both mean and median were used.

Since every possible combination of criteria within the defined range was calculated, the total number
of single inversions is the product of different noise types (n = 5), various amounts of noise
(n = 21), different cost functions (7 = 4), number of best fits (n = 21) and the two separate averaging
methods (n = 2). Consequently, a total of 17,640 singular inversions were conducted and each validated

against the in-situ database of LAL



Prosail inversion of AVIS-3 - which noise type best?

The comparison of the influence of the different noise types revealed that there is no significant
difference in the model accuracies. The best results were obtained by inverse-multiplicative noise
(NSE = 0.67), followed by additive and inverse-combined noise (NSE = 0.66). Despite the fact that the
classical multiplicative noise performs worst (NSE = 0.65), implying that the assumptions that led to the
implementation of an inverse mode of this noise type were correct, the differences in the highest accuracy

achieved by the different modes are too small to be of meaningful relevance. Additive noise (Equation (1))
RpsR) = Roym(R) + 2(0,0(2)) (n
Multiplicative noise (Equation (2))
Rys(R) = Ry Q) X% [1 + x(0,0(2))] (2)
Inverse-multiplicative noise (Equation (3))
Rus() = 1= {[1 = Ryym()] x [1 + x(0,0())]} 3)
Combined noisc (Equation (4))
Res () = Ry % [1 + x(0,20(0))] + x(0,6(1)) (4)
Inverse-combined noise (Equation (5))
Rps) = 1= {[1 = Ry W] % [1 + x(0.206(1)]} + x(0,0(2)) (5)
where

R, s(2) simulated reflectance value for band A with noisc

Rym(A)  simulated reflectance value for band A

x(0,6)  Gaussian distribution (mean value 0 and standard deviation )
a(d) uncertainties within the Gaussian distnibution for band A

In order to account for the fact that a given vanance value has a less pronounced effect when applied
as multiplicative noise, it is double-weighted compared to the additive noise factor in the combined methods.
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Based on the estimated vegetation parameters, the progressing development of specific crops
throughout the growing season could be analyzed. Figure 6 shows the development of LAI for the
investigated crops from 28 April to 8 September. The information was extracted from the retrieved
parameter products by randomly choosing and averaging 30 pixels per scene and each crop type from
the corresponding parameter.
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Figure 6. Seasonal development of LAI for the five investigated crops throughout the
growing period of 2012, derived from six data acquisitions.



Data

1. Prosail simulation of AVIS-3

2 strategies. The airborne imaging spectrometer AVIS-3 (Airborne Visible and Near Infrared Table 1. Airborne dats scquisitions over the Newsling test site.

* Spectrometer, LMU, Munich, Germany), developed at the Department of Geography of the Ludwig iﬁ?* m; Sum ﬁ"“‘" 5‘%—
Maximilian University (LMU) [19], was used to perform four imaging flights during the course of the :SMH-‘:; HySpe ;: o
vegetation period of 2012 over a 12 km? large test site in Southern Germany (Neusling, Lower Bavaria, 16 Jung AVIS-3 bt 156
central coordinates: 48.69 N, 12.87 E). The seasonal campaign was complemented by two additional u]m AvIES i iss
acquisitions from the airborne sensor HySpex, which is operated by the German Aerospace Center
(DLR) [20].

In order to validate the methods developed for the retrieval of biophysical parameters, an extensive
field campaign was carried out alongside the airborne data acquisitions, resulting in more than 330 valid
LAI measurements of five different crops. These represent the major crops cultivated in the arca (winter
wheat, winter barley, rapeseed, maize, sugar beet). The LAI measurements were conducted non-destructively ‘ ¢
using LAI-2000 plant canopy analyzers (Li-Cor, Lincoln, NE, USA), applying a diagonal sampling  [#8 ‘_ ” ~ o '
pattern (two reference and cight canopy measurements) within elementary sampling units corresponding g p’ \(} e\ {
to the geometric resolution of the airborne data. s o Z

1. Prosail simulation of Enmap
2. AVIS-3 simulation of Enmap




Prosail inversion of EnMAP - ground truth?

In order to evaluate the capacity of the analysis method for the retrieval of LAI from future EnMAP
data, the LUT inversion was adapted and repeated on the simulated EnMAP data, based on the identical
setting as it had been used for the airborne data. The application of the inversion method to the simulated
EnMAP data requires validation as well. This, however, is not easily done based on in-situ
measurements, since ground measurements naturally only are representative for the spatial resolution
for which they were collected. In our case, the LAI data was sampled at a diagonal sampling pattern
within ESUs of 4 by 4 m and thus correspond to the 4 m scale of the airborne data. EnMAP, however,
will operate at a geometric resolution of 30 m, making it very hard to acquire statistically significant

amounts of overpass-parallel in-sifu measurements for ESUs of that considcrabie spatial extent.
Consequently, another approach was chosen, which uses the results of the parameter retrieval based on
the airborne image data. Since the estimation accuracy on the 4 m scale of the airborne acquisitions was
proved to be acceptable by validation against in-situ data, the validated output images were scaled up to

the spatial resolution of 30 m, thus generating a validated spatial LAl map at 30 m resolution. This
validated map then was consulted as reference for the LAI map that was originally retrieved from the
simulated EnMAP data at 30 m resolution. The acquisition of the second flight on 8 May 2012 was used

for the comparison. In Figure 7, the LAI image retrieved from the simulated EnMAP scene and the
upscaled airborne LAl map are presented.
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Figure 7. Comparison of estimated LAI (8 May 2012), which was derived by the adapted
LUT algorithm from simulated EnMAP data (Left) and upscaled (from 4-30 m) LAI
estimation based on the 4 m airborne data (Right).

The visual interpretation of Figure 7 shows that the estimations of LAI appear to have led to very
similar results in both maps. To further assess the consistency between airborne and EnMAP retrieval,
an uncertainty map of both scales is presented in Figure 8, giving the standard deviation of all considered
estimated LAI values (n = 350) per pixel before averaging. The maps, one for the airborne and one for
the EnMAP-scale retrieval, give a spatial measure of how definite the resulting LAI value was found



among the simulated spectra that were selected by the inversion routine. By comparing Figures 7 and 8,
it can be observed that high' LAl values are generally associated with  higher uncertainty. The highest
levels of uncertainty are observed for the forested areas in the South of the test area. This can to some

degree be traced to the fact that the parameters included in the LUT were not designed to include
characteristics of forested areas, because forests were not targeted in this study. For both scales, the
standard deviation among the 350 best fits is roughly 1 LAI unit. However, it also can be deduced that
the model uncertainty on average increases by 3% when going from the airborne (Figure 8, right) to the

satellite borne scale (Figure 8, left).

EnMAP

00 1 12 T Veriater

Figure 8. Standard deviation of all considered estimated LAI values (n = 350) before
averaging, giving a spatial measure of model uncertainty for the retrieval of LAI from
simulated EnMAP data (Left) and from airborne data (Right).
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Figure 9. Difference map calculated from the LAI estimations based on simulated EnMAP
and upscaled original airborne data (Left) and density plot showing a pixel-wise comparison
of both spatial data sets (Right).

In order to examine local deviations and to determine whether they follow a spatial pattem, a map

was calculated showing the difference between the simulated EnMAP and the upscaled airborne
estimation (Figure 9, left). Further, the agreement between both spatial data sets was calculated by
confronting each pixel of the LAI-EnMAP map to the corresponding one of the airborne scale LAl map

(Figure 9, right).
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Forests play a vital role in biological cycles and environmental regulation. To understand the

key processes of forest canopies (eg, photosynthesis, respiration and transpiration), reliable

and accurate information on spatial variability of Leaf Area Index (LAl), and its seasonal

dynamics is essential In the present study, we assessed the performance of biophysical

parameter (LAl) retrieval methods viz. Look-Up Table (LUT)-inversion, MLRA-GPR (Machine

Learning Regression Algorithm-Gaussian Processes Regression) and empirical models, for ..
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