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(1) PROSPECT Model: Describe leaf reflectance and transmittance spectrum as a

function of some biochemical parameters, e.g., chlorophyll content and water

content in leaves;

(1) SAIL Model: Describe canopy reflectance spectrum as a function of some

biophysical/structural parameters of canopy, e.g., LAI, solar angle;

(1) PROSAIL Model: PROSAIL = POSPECT + SAIL, a function of both biochemical

and biophysical/structural parameters of leaves and canopy;

Key Canopy RTMs



(1) Prospect is a leaf-level RTM that describes
the transmittance and reflectance characteristics
(400nm to 2500nm) of leaves as a function of
some leaf biochemical parameters, i.e.,

Leaf structure parameter N,

chlorophyll a + b concentration (Cab) (μg/cm2),
equivalent water thickness (Cw) (cm), and

dry matter content (Cm) (g/cm2).

(2) Prospect represents leaf as one or a stack of
several absorbing plates with rough surfaces
(equivalent to isotropic scattering).
http://photobiology.info/Jacq_Ustin.html

Prospect Model (Allen et al. 1969, Jacquemoud and Barret, 1990)



PROSPECT:

Leaf structure parameter N

Chlorophyll a + b concentration (Cab)
Equivalent Water Thickness (Cw)

Dry Matter Content (Cm)

PROSPECT

Hemispherical Leaf Reflectance and Transmittance Spectrum



(1) Sail is a Canopy-level RTM that describes the
reflectance characteristics (400nm to 2500nm) of Canopy
as a function of some biophysical and geometric
parameters, i.e.,

Canopy structural parameters (i.e., Leaf Inclination Angle
and LAI)

Soil spectral reflectance,

Illumination and acquisition geometry (i.e., Zenith Solar
Angle, Zenith and Relative Azimuth angles) and Fraction
of Diffuse Illumination (skyl, also called an atmospheric
parameter)

Sail Model (W. VERHOEF, 1984, 1985)

Radiative transfer in plant canopies, i.e. transmission, 

absorption and scattering (Kattenborn, 2018)



Sail:

Canopy Parameters: LAI Leaf Inclination Angle (θ1)

View & Illumination Parameter:  Zenith and Relative Azimuth angles (θv, ψv)

Zenith Solar Angle (θs)

Fraction of Diffuse Illumination (skyl)

SAIL Soil Spectral Reflectance (ρs))

Canopy Bidirectional Reflectance

LAI



(1) Prosail integrates
Prospect into Sail to link
Canopy-level RTM with
leaf-level RTM;

(2) Prosail has 14 input
parameters, including both
biochemical and
biophysical parameters;

(3) Prosail outputs the
bidirectional reflectance of
canopy, from 400 to 2500
nm in 1 nm increments.

Prosail = Prospect + Sail (Verhoef et al. 2007)

Prosail = Prospect + Sail (Kattenborn, 2018)



Prosail = Prospect + Sail

Canopy Parameters: LAI Leaf Inclination Angle (θ1) Hot-spot size parameter (s)

View & Illumination Parameter:  Zenith and Relative Azimuth angles (θv, ψv) Zenith Solar Angle (θs)

Fraction of Diffuse Illumination (skyl)

Soil Spectral Reflectance (ρs))SAIL

Equivalent Water Thickness (Cw)

Chlorophyll a + b concentration 

(Cab)

Leaf structure parameter N

Dry Matter Content (Cm) PROSPECT

Leaf Reflectance and 

Transmittance Spectrum
Bidirectional Canopy 

Reflectance

PROSAIL Model



Remote Sensing System Overview
Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, 

chlorophyll content in leaves, leaf area index/density;

Inverse model: 

X = g(Y, θ) 

where g(.) is an unknown inverse function with unknown

model parameter θ. 

Why estimating X is difficult? 

--- Knowledge f(.) complex, biased, highly nonlinear, 

with large uncertainty; 

---- Data (X, Y) pairs limited, poor quality;

---- Prior information (e.g., spatial prior) ambiguous;



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 







(a)Parametric Approach Based on Forward model Y = f(X):

Step 1: Use Prosail model to simulate (Xi, Yi) pairs;

Step 2: Extracted vegetation indices (VI) from {Yi}, and build (Xi, VIi) pairs;

Step 3: Build linear regression model X=g(VI), e.g., Xi=a*VI1+b*VI2+c, 
estimate parameters θ={a,b,c}, by J(θ) = ∑||Xi-g(VI)||, θ = min J(θ)

Step 4: Once θ is known, given Y->VI, use  X=g(VI) to estimate X

Popularity and Trend: 

Very popular. More than one third of all studies use this approach, as shown 

in Fig. 6. But, it has a decreasing tendency, as indicated by Figure 7. 

Advantages: 

Low calculation complexity, high computation power and speed, while still 

delivering meaningful results, e.g., Broge et al. 2000. Popular VIs includes 
ratio vegetation index (RVI) and normalized difference vegetation index 

(NDVI), 

Disadvantages:

(1) Lack of novelty, because VI have been exhaustively exploited. (2) VI has 
low transferability. (3) VIs make only limited use of the full spectral resolution

available. (4) essentially knowledge-driven feature engineering, so difficult to 
determine the “best” feature subset from all available VIs. 



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(4) Data Simulation & Machine Learning (ML) Approaches
If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(X j,Yj) | j=1,2,...,M}. Instead of using LUT for 

data inversion, we can use ML approaches to learn the inverse function, i.e., X=g(Y), and use this inverse function to estima te the X value 

of an observed Y value. 

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invertible. 

Based on Y=f(X), similar to LUT, we simulate the following X and Y pairs. 

X1   :          Y1

X2   :          Y2

X3   :          Y3

….

X4   :          Y4

Based on simulated {(Xj,Yj) | j=1,2,...,M} pairs, 

we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in the inverse function g(.) which is a statistical model or machine learning model. Once w e know θ, we can 

establish the inverse function g(.), and use it to estimate the X value of an observed Y value by X=g(Y). 

Comparing with the LUT approach that is essentially discrete interpolation, the ML approaches can learn a continuous inverse function g(.) using the 

simulated data, and thereby they theoretically can achieve more accurate estimation. Moreover, ML approaches tend to be faste r because they do 

not need to do LUT searching for every observation. 



(b) Numerical Iterative Optimization Approach 

Based on Forward model Y = f(X) and a spectra observation Yi

Step 1: Build an objective function J(Xi) = ||Yi-f(Xi)||

Step 2: Estimate Xi by Xi = min J(Xi) using iterative nonlinear optimization 

approaches, e.g., gradient descent, Markov chain monte carlo (MCMC), etc. 

Popularity and Trend: 

Not popular and decreasing trend (Bicheron and Loroy, 1999; Goel and 
Thompson, 1984)

Advantages: 

Does not need data simulation based on forward model; 

Can directly estimate Xi given spectra observation Yi; 

Disadvantages:

(1) high computational loads;

(2) high risk of converging to local minima;



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(2) Numerical Approaches

If the radiative transfer model f(.) is known, and we have an remote sensing observation Y, we can use the numerical 

approach to estimate the associated X.

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and un-invertible. 

Based on some observations {Y}, we can build an objective function:

J(X) = Y-f(X)

X = min J(X)

We try to find X that through f(.) can generate output whose value is very close to the value of Y. 

There are many methods that can solve this nonlinear optimization problems, for example,

---- Newton’s method

---- Gradient descent methods

---- Simulated annealing approach

Because the forward model f(.) contains knowledge and physical rules, f(.) is usually called physical model. 



(c) LUT Approach 
Based on Forward model Y = f(X):

Step 1: Use Prosail model to simulate (Xi, Yj ) pairs and build a LUT;

Step 2: Given an observed Y value, we search the LUT to identify the row whose Yj

value is the closest to the observed Y value. 

Step 3: The Xj value associated with Yj is treated as the estimated X value of Y. 

Popularity and Trend: 

Extensively used in the last decades; Combal et al., 2002; Knyazikhin et al, 1998; 
Weiss  et al., 2000

Increasing trend, as indicated by Figure 7. 

Advantages: 

Much faster than iterative optimization approach;

Provide possibility to overcome the problem of local optima;

Allow the integration of prior information into the building of LUT;

Disadvantages:

(1) searching algorithm is computationally inefficient, especially when the number of 

spectral channels is high; (2) a discrete optimization approach, cannot perform 
accurate interpolation and extrapolation; 



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(3) LookUp Table (LUT) Approaches

If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(Xj,Yj) | j=1,2,...,M}, based on 

which we can build a LUT and use it to estimate the X value of an observed Y value. 

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invertible. 

Based on Y=f(X), we build a LUT by first sampling Xj uniformly within a range [A,B] (A and B are respectively the theoretical min and 

max value of X), and then obtaining the associated Yj value by Yj=f(Xj). 

X1   :          Y1

X2   :          Y2

X3   :          Y3

….

X4   :          Y4

Given an observed Y value, how do we estimate its X value using LUT? First, we search the LUT to identify the row whose Y j value is 

the closest to the observed Y value. Then, the Xj value associated with Yj is treated as the estimated X value of Y. 

Comparing with the numerical approaches, the LUT approach is simpler and has theoretical advantages such as being able to find the 

global optimum in the parameter space, and thereby the LUT approaches have been widely used in solving remote sensing inverse

problems. 



(d) Machine Learning Regression Algorithm (MLRA) 
Based on Forward model Y = f(X):

Step 1: Use Prosail model to simulate (Xi, Yi) pairs;

Step 2: Build nonlinear regression model X=g(Yi), e.g., ANN, SVR, Gaussian 

process regression (GPR), by J(θ) = ∑||Xi-g(Yi)||, θ = min J(θ)

Step 3: Once θ is known, given Y, use  X=g(Y) to estimate X

Popularity and Trend: 

Very popular (ANN + MLRA) in Fig. 6; Fast growing trend (ANN + MLRA) in 
Fig. 7;

Advantages: 

Comparing with (a) parametric approach, (d) is nonlinear, uses all spectral 
channels and does not need to extract VIs as model input; 

Comparing with (c) LUT approach, (d) allows continuous interpolation and 
extrapolation;  

Disadvantages:

Low model complexity comparing with deep neural networks; 

Relies on feature engineering to generate discriminative spatial-spectral 

features;



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



Deep learning in vegetation remote sensing 

Concerning biochemical and structural plant traits, an interesting approach is to train CNNs with simulated data 

derived from physicallybased models. Such hybrid approaches, i.e. coupling statistical and process-based 

models, may not only provide data for training but also enable including priors and realistic constrains in model 

training (Reichstein et al., 2019). 

For instance, Annala et al. (2020) trained a 1DCNN with reflectance spectra simulated with the radiative transfer 

model (RTM) SLOP (Maier et al., 1999). Although SLOP is a relatively simple leaf reflectance model, Annala et al. 

(2020) demonstrated promising tests of this hybrid inversion method for UAV hyperspectral acquisitions of forest 

canopies. More sophisticated RTMs may allow to produce more robust models, e.g. PROSAIL (Jacquemoud et 

al., 2009), enabling to account for bidirectional reflectance effects in plant canopies, whereas 3D-RTMs such as 

FLIGHT (North, 1996) or DART (Gastellu-Etchegorry et al., 1996) may provide interesting sources for generating 

synthetic training data for 2D-CNNs (see Section 3.2 for details on 1D-, 2D- and 3D-CNNs). 

Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation re mote sensing. ISPRS 

Journal of Photogrammetry and Remote Sensing, 173, 24-49.

Reichstein, M., Camps-Vails, G., Stevens, B., Jung, M., Denzler, J., Car-valhais, N., Prabhat, 2019. Deep learning and process understanding for 

data-driven Earth system science. Nature 566 (7743), 195–204. https://doi.org/10.1038/s41586-019- 0912-l (cit. on pp. 6, 22, 24, 57, 60).



Deep Learning (DL) for Inverting Prosail Model

(1) Use DL as a regression technique to directly obtain the inverse function X=g(Y) 

based on simulations from the Prosail model; 

(2) Use DL as an unsupervised feature extraction approach to learn efficient features, 

which can be used boost the LUT approach;



LUT Inversion of PROSAIL using Hyperspectral Imagery

Advantages:

----The possibility for obtaining global optima in the parameter space;

----Strong model transferability;
----Good accuracy and precision;

Disadvantages:

----Large computational cost due to high-dimensionality and spectral redundancy;
----Difficult to define a similarity measure for high-dimensional hyperspectral data;

Current Dimensionality reduction approaches:

----Knowledge-driven feature engineering approach, e.g., vegetation indices;
----Difficult to select subset of features from all possible features;



Feature Engineering vs. Feature Learning

• Feature Engineering

----Knowledge-driven, requires knowing what makes “good” features;

----Does not handle data variability very well;

----Requires feature selection from many possible features;
----Lower accuracy in computer vision and machine learning applications;

• Feature Learning:

----Data-driven, relies on the data to obtain meaningful features;

----Can well adapt to the characteristics of the data;

----Does not require feature selection;
----Increasing popularity and higher accuracy in many applications;



Research Objectives:

Explore deep learning approach for unsupervised feature learning, such that:

--- features are data-driven;
----features are noise-free;

----features are compact;

----features are extracted using full spectra bands;

----features are non-linear;

----using the features can improve LUT inversion approaches for better satisfying 
the operational requirements of incoming big hyperspectral data.  



Autoencoder Architecture



Stacked Autoencoer



Stacked AutoEncoder: Advantages

• Unsupervised feature learning approach which does not requires

training data or prior knowledge of the problem;

• Deep nonlinear feature transformation for better capturing

discriminative information in the spectral domain;

• Features are compact and noise-free;

• Fast due to GPU computation;



Overview of 
the Methodology

32

● Step 1: LUT generation;

● Step 2: Learning SAE features;

● Step 3: LUT inversion of Prosail 

in SAE feature domain;



Simulated study

• Step 1: Simulate data using the Prosail model, and

generate LUT

• Step 2: Training SAE for feature extraction;

• Step 3: Test LUT inversion using simulated test data;



Performance variation with the “deepness”
of the model



Results on Simulated Image using Prosail



Results on Simulated Image using Prosail



Results on Simulated Image using Prosail



Experiments on real UAV hyperspectral

data

• Step 1: Simulate data using the Prosail model, and generate LUT

• Step 2: Training SAE for feature extraction;

• Step 3: Perform LUT inversion of real hyperspectral image collected in

2018 by the Headwall UAV hyperspectral system over a vineyard near

Toronto;



PRESENTATION TITLE



Pseudo RGB ImageRGB Image



Estimated LAIRGB Image
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Estimated LAIRGB Image
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Estimated LAIRGB Image
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Estimated LAIRGB Image



PRESENTATION TITLE
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Estimated leaf 
structure parameter

RGB Image



Processing time for a 512-by-512 image

Approaches Time used for LUT inversion

272 channels under CPU 28.23 minutes

50 SAE features under GPU 2.01 seconds



Conclusions:

• The SAE features has potential to improve both the

accuracy and computation efficiency of the LUT inversion of

Prosail model;

• The proposed LUT inversion in SAE feature domain can

better handle the challenges of big hyperspectral data in

many vegetation monitoring applications;







Data 

1. Prosail simulation of AVIS-3

2. dfd

dfa

1. Prosail simulation of Enmap

2. AVIS-3 simulation of Enmap 



Preprocessing of Airborne data - why additional channels?



AVIS-3 simulation of EnMap data - why radiance to DN value?



Prosail simulation of AVIS-3 - Influence of discretion level?



Prosail simulation of AVIS-3 - Influence of LUT size, why Gaussian?



Prosail simulation of AVIS-3 - How to account for Geometry 
Influence? 



Prosail simulation of AVIS-3 - How to account for Geometry 
Influence? 



Prosail  simulation AVIS-3 - Why band selection 



Prosail simulation AVIS-3 - Why adding noise



Prosail  simulation AVIS-3 - Why different noises 



Prosail simulation AVIS-3 - Cost function - Why LP is more robust? 



Prosail simulation AVIS-3 - Cost function - Why LP is more robust? 



Prosail inversion of AVIS-3 - why 17,640 inversions? 



Prosail inversion of AVIS-3 - which noise type best? 



Prosail inversion of AVIS-3 results:

(1) Median better than Mean, 
because of multiplicative noise? 

(2) Accuracy is low if noise level too 
high, or number of fits too low.

(3) LaPlace better than other cost 
functions, because it is L1 and as 
such more robust to non-
Gaussian noise? 

(4) Medium noise level leads to the 
best accuracy. 





Data 

1. Prosail simulation of AVIS-3

2. dfd

dfa

1. Prosail simulation of Enmap

2. AVIS-3 simulation of Enmap 



Prosail inversion of EnMAP - ground truth? 











Questions?
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