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Remote Sensing System Overview
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REFLECTIONS

Area

Forward model:
Y =f(X)
(1) Y: radiation received by the sensor

(2) X: variables that you want to estimate, e.g., class
labels, chlorophyll content in leaves, leaf area
index/density;

Inverse model:

X=g(Y, 6)

where g(.) is an [IEKESME inverse function with [KHGHE

model parameter 6.

Why estimating X is difficult?

--- Knowledge f(.) complex, biased, highly nonlinear,
with large uncertainty;

---- Data (X, Y) pairs limited, poor quality;

---- Prior information (e.g., spatial prior) ambiguous;



Remote Sensing System Overview
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Forward model: Y =1(X)
Inverse model: X =g(Y, 6)

What are the approaches for solving the inverse
problems? Advantages? Disadvantages?

Common approaches for solving inverse model:

1. Iff() is known and invertible, use direct inverse
function approach.

1. Iff(.) is known but highly nonlinear,
2.1 use numerical approaches, e.g., Newton’s
approach, to estimate X using observations {Y}.
2.2 use the lookup table (LUT) approach to
simulate {(X,Y)} pairs for estimating {X} of
observations {Y}.

1. Iff(.) is unknown, requires (Y, X) pairs, use ML
and DL, to empirically build g(.).



(1) Direct Inverse Function Approach

In an ideal scenario, the forward model f(.) is simple and invertible, we can use direct inverse function approach to estimate X.
Forward model: Y =1(X)
where f(.) is invertible, f(.) -> f1(.). For example,

Forward model: Y =X2
Inverse function: X = Y05

Given Y, X can be estimated based on the above inverse function.

However, in real-world remote sensing systems, the forward model f(.) are complicated radiative transfer models, which are usualy
highly nonlinear and non-invertible, and as such they do not have inverse functions.

Questions: Can this approach use data (X,Y) pairs, and spatial prior information?



C,/AT
Planck’s Law B(AT) = ¢,/ N/ [e - 1]  (W/m?/ster/um)

where A = wavelengths inum

T =temperature of emitting surface (deg K)
c; =1.191044 x 10-°> (mW/m?/ster/cm-4)
¢, = 1.438769 (cm deg K)

Brightness Temperature
Ci
T = ¢,/ [N In(——+ 1)] is determined by inverting Planck function.
AoB,



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledg
e-driven;
Simple,
easy

Unrealisti
c; rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both simulated
and observed data

Yes, similar to ML

Strong modeling
capability; automatic
feature learning;

Overfitting and
underfitting; Black-
box;



(2) Numerical Approaches

If the radiative transfer model f(.) is known, and we have an remote sensing observation Y, we can use the numerical
approach to estimate the associated X.

Forward model: Y =1(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and un-invertible.
Based on some observations {Y}, we can build an objective function:

J(X) = Y-f(X)

X =min J(X)

We try to find X that through f(.) can generate output whose value is very close to the value of Y.

Because the forward model f(.) contains knowledge and physical rules, this approach is usually called physical model.

Questions: How to find X that can minimize J(X)? Try different X and see which one gives you smallest J(X)? Better approach?



Root-finding Algorithm: Newton’s Method

Funktion
B O Tangente

From wikipedia.org

Start with initial guess, and
iteratively improve it using its
tangent.

f(zn)
f'(zn)

Lpel = Ly —

The function f is shown in blue and
the tangent line is in red.

We see that x, . ; is a better
approximation than x, for the root x
of the function .

The assumption is the x-intercept will
typically be a better approximation to the
original function's root than the previous
guess, and the method can be iterated.


https://en.wikipedia.org/wiki/Iterative_method

Gradient Descent

Q1: What if there are multiple local minimums
for complex f(.)?

Q2: What are roles of starting point and step
length?

Start with initial guess, and iteratively
improve it using its gradient.

a,.1 =a, —yVF(a,)



Local Minima

HA0 N &~ O O

From https://mi4a.github.io

A more realistic scenario
where there are many
local minima;

Different initializations
lead to different local
minima;

How do you find global
minima?



accommodate errors?

Optimize values of an ensemble of variables (sfate vector X) using observations:

Smocthness Sparsity
Bayesian framework - how to use “prior” information and A prcr bake - -
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observation vector y | —F‘

y=F(x)+e

FP(x) = probability distribution function (pdf) of X

Probability density

P(x,y) = pdf of (x,¥)

L = PIxX)dxP (v | X)dy
P(y|x) = pdf of y given X ¥l .

P(xy)dsdy

T = PAY)AYP (x| y)dx
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a posteriori pdf
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Bayes’
theorem

] Py | x)P(x)
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® Ty
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normalizing factor (unimportant)

Maximum a posteriori (MAP) solution for X given Y is defined by max( /(x| v))
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Parameler space o

= solve for "-T_,_fﬁ X|vi=0



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior
of Xin Bayesian
estimation

Knowledge-
driven; estimate
U; Efficient for
simple f(.) in
convex problems

Rely on efficiency
of nonlinear
solver; Slow;
Local optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both simulated
and observed data

Yes, similar to ML

Strong modeling
capability; automatic
feature learning;

Overfitting and
underfitting; Black-
box;



Prosail Simulation - how to simulate data?

TABLE I: Ranges of the input variables for the PROSAIL model for the generation of the LUT.

Variable Abbr. Lnit Min Max
Leaf structure parameter N Unitless | 2
Leaf chlorophyll concentration Clab perm 20 70
Dy matter content Clin gem ™ 0,004 0,007
Equivalent water thickness [ gem ™ 0,005 .03
Leal area index LAl miem* (.00 6
Average leaf angle ALA Deg 30 0
Hot-spot size parameter hot mm~! 0.05 1
Soil brightness parameter scale Unitless 0.5 1.5
!;1 ' I-ol.l':nlsuln o ID:DE ) ;:IT1 0.1 -0.05 4] 005 = 01

Hormal Distribution

Uniform Distribution

Prosail is a forward model:
Y =1f(X)
What is Y?

1. Bidirectional reflectance from canopy (400nm -
2500nm);

What are the factors that constitute X:
1. Atotal of 14 input parameters;

How to simulate Y using X?

Step 1: know the distribution of X;

Step 2: obtain samples {Xi| i=1,..,N} based on the
distribution of X;

Step 3: use {Xi| i=1,..,N}as input to Prosail and
generate {Yi| i=1,2,...,N}



(3) LookUp Table (LUT) Approaches

If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(X;,Y)) | j=1,2,...,M}, based on
which we can build a LUT and use it to estimate the X value of an observed Y value.

Forward model: Y =1(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invettible.

Based on Y=f(X), we build a LUT by first sampling X; uniformly within a range [A,B] (A and B are respectively the theoretical min and
max value of X), and then obtaining the associated Y; value by Y=f(X;).

X4 : Y,
X, : \C
X3 Y3
X Y

Comparing with the numerical approaches, the LUT approach is simpler and has theoretical advantages such as being able to find the
global optimum in the parameter space, and thereby the LUT approaches have been widely used in solving remote sensing inverse
problems.



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? use value prior
for sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad
for extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both simulated
and observed data

Yes, similar to ML

Strong modeling
capability; automatic
feature learning;

Overfitting and
underfitting; Black-
box;



(4) Data Simulation & Machine Learning (ML) Approaches

If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(X;,Y;j) | j=1,2,...,M}. Instead of using LUT for
data inversion, we can use ML approaches to learn the inverse function, i.e., X=g(Y), and use this inverse function to estimate the X value
of an observed Y value.

Forward model: Y ={(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invertible.

Based on Y=f(X), similar to LUT, we simulate the following X and Y pairs. RTM input data

Xl . Y]_
X5 . Y,
X3 : Ys
T RTM synthetic e ™
X4 : Y4 data (LUT) iR S
) Trained Map of variable
"’"'“' s Sening (advanced) of interest
eeny regression model (eg. LCC, LAY
Validation

where 6 is the unknown parameters in the inverse function g(.) which is a statistical model or machine learning model. Once we know 6, we can
establish the inverse function g(.), and use it to estimate the X value of an observed Y value by X=g(Y).

Comparing with the LUT approach that is essentially discrete interpolation, the ML approaches can learn a continuous inverse function g(.) using the
simulated data, and thereby they theoretically can achieve more accurate estimation. Moreover, ML approaches tend to be faster because they do
not need to do LUT searching for every observation.



LUT vs. Machine leaning
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True inverse function vs. approximated inverse function

Forward model:

Y =f(X)

(2) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function: .

X =t(Y) =f1(Y) -
where f1(.) is difficult to get and - '_
the form of t(.) is usually unknown;

Underfitting Desired Overfitting

Approximated inverse function:
X=g(Y)
Note that g(.) is only an approximation to the true inverse function t(.)

Based on {(X,,Y)) | j=1,2,...,n}, we build the following

Appropriate fitting close objective function:
Overfitting larger
Underfitting smaller J(8) = 21IX-g (Yl

6 = min J()



C,/AT
Planck’s Law B(AT) = ¢,/ N/ [e - 1]  (W/m?/ster/um)

where A = wavelengths in um

T =temperature of emitting surface (deg K)
c, = 1.191044 x 10-°> (mW/m?/ster/cm-4)
c, = 1.438769 (cm deg K)

What happens if you fit the BT function using
a million-layers neural network?

Brightness Temperature
Ci
T = ¢,/ [N In(——+ 1)] is determined by inverting Planck function.
AoB,



How do you select the “best” g(.)?

Training Subset

Validation

CV Loop

Tune hyperparameters

Try different models, g,(.), 9-(.), ..., 9,(2), and select the one that with
highest accuracy on the validation set.



Overfitting vs. Underfitting

Overfitting:

---- ML model is so flexible and complex that it accommodates the noise effect in the training data
and treats it as signal, and the learnt noise characteristics cannot generalize well to the test data;

---- very high training accuracy but low validation/test accuracy;

Underfitting:

---- ML model is so simple and rigid that it does not has enough capacity to accommodate signal in
the training data, and the learnt biased/partial information cannot generalize well to the test data;

---- low training accuracy & low validation/test accuracy;

Underfitting Desired Overfitting



Training error vs. test error as model complexity
changes

A
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Prediction error

What are Bias and Variance? Why overfitting means small bias and big variance?

Low
Variance
Underfitting __
&

_

High
Varance

High

Bias /

Truth

Low ]

Bias
.

\}_.

Overfitting

i,

” z
- Variance

>
>

A 2

Model complexity

Bi&E is the BISIEHREE between the ElETGUCIDIGaIGHEN of our model and the GG \which we are

trying to predict.

WASHISIEE is the VARSI of mode! BIEEIEHER.

Why increasing model complexity lead to small bias in prediction?

---- CTCESNIeaEIEEMBIENE -> o(.) to be Universal approximator -> stronger
accommodating/modeling capability to learn the b in

X =1(Y) -> less bias;

r variance in prediction?
-> g(.) to be universal approximator -> stronger

accommodating/modeling capability to learn both the genuine nonlinear relationship between X and
Y and -> larger variance;

Why incr ingm | complexity | lar




Overfitting vs. Underfitting

Overfitting:

---- ML model is so flexible and complex that it accommodates the noise effect in the training data and treats
it as signal, and the learnt noise characteristics cannot generalize well to the test data;

EHEIEESISNRBIVATIAHCH in prediction;

Underfitting:

---- ML model is so simple and rigid that it does not has enough capacity to accommodate signal in the
training data, and the learnt biased/parcial information cannot generalize well to the test data;

BiSIBESIBNSREIVAREHEH] n prediction;

Underfitting Desired Overfitting



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both f(.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in
sampling and spatial priorin
Random fields

Knowledge-driven;
flexible; continuous
fitting; good
inter/extrapolation;
faster than LUT

Overfitting and
underfitting risk to
simulated data; difficult

model selection; Ssensitive

to accuracy of f(.), similarity
metrics, sampling density and
range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both simulated
and observed data

Yes, similar to ML

Strong modeling
capability; automatic
feature learning;

Overfitting and
underfitting; Black-
box;



(5) Machine Learning (ML) Approaches

If f(.) is unknown, we resort to data for solving inverse problems. We need to collect X and Y measurements, i.e., {(X;,Yj) | j=1,2,...,T}, based
on which we establish the inverse function X=g(Y,0), where g(.) is a statistical or ML model (empirical models).

No f(X)

o~
AN

We need to measure Y inpet m Foaliss " §2£ :
o

and the associated ground truth data X to get some (X,Y) pairs,

to train ML model.

X1 . Y1
X5 : Yo
X3 . Yg Input Qutput
Xa : Y4 Feature Leaming + Classifier
(End-%-End Leaming)
(b)

Based on {(X,Y)) | j=1,2,..., T}, we build the following objective function:

J(©) = X [IX-g(Y)Il
6 = min J(0)

where 0 is the unknown parameters in g(.). Once we know 6, we can establish the inverse function g(.), and use it to estimate the X value of an
observed Y value by X=g(Y).

Limitations of ML approaches, when X and Y have highly-nonlinear relationship? Why feature extraction and selection? Why not using original
features?



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and
observed data

Yes, spatial priorin
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting,
underfitting; Feature
and model selectionis
difficult and slow

(6) DL

yes

no

yes
no

Yes, use both simulated
and observed data

Yes, similar to ML

Strong modeling
capability; automatic
feature learning;

Overfitting and
underfitting; Black-
box;



(6) Deep Learning (DL) Approaches

Deep learning (DL) approaches are also ML approaches, and as such they can be used for data inversion through (4) and (5), i.e.,

---if f(.) is known, we simulate {(X;,Y;) | j=1,2,...,T} using f(.) and use them to train DL models for obtaining the inverse function X=g(Y);
---if f(.) is unknown, we obtain remote sensing data Y and ground truth data X to build X and Y pairs, i.e., {(%,Y;) | j=1,2,...,T}, and use them
to train DL models for obtaining the inverse function X=g(Y);

(feedforward) Neural network

Y (output layer)

Y, = FW"X +b"), Y,=FW?Y,+b?), Y=wY,+p"

where 6 is the unknown parameters in DL model g(.). Once we know 6, we can establish the inverse function g(.), and use it to estimate the X value
of an observed Y value by X=g(Y).

Comparing with traditional ML approaches, such as SVM and random forest, the DL approaches, due to their strong modeling capability and GPU
computation, are more capable of effectively and efficiently learning the complex nonlinear relationship between Y and X, and perform accurate and
fast model prediction for estimating X.



When DL is better than ML?

Forward model:

Y =f(X)

(2) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function: .
X =t(Y) =f1(Y) .

where f1(.) is difficult to get and -
the form of t(.) is usually unknown;

Underfitting Desired Overfitting

Approximated inverse function:
X=g(Y)
Note that g(.) is only an approximation to the true inverse function t(.)

Based on {(X,,Y)) | j=1,2,...,n}, we build the following

Appropriate fitting close objective function:
Overfitting larger
Underfitting smaller J(6) = 211X-g(Y)ll

6 = min J()



Feature-driven machine learning vs. Data-driven deep
learning (DL)

Input

Output

Input

> Output

Feature Learning + Classifier
(End-to-End Leamning)

(®)
Advantages of DL approaches for RS image classification:

(1) automatically learn the “best” feature without requiring task-specific classifier-specific knowledge;
(2) End-to-end approach without any intermediate stages in the data-processing pipeline;

(3) Complex model -> strong modeling capability -> efficiently capture the subtle differences among classes;

(4) Powerful GPU computation



f(.) is known

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

f(.) unknown, (X,Y) known

f(.) unknown, (X,Y) unknown

If both (.) and (X,Y) known,
can accommodate both?

Can use prior information? e.g.,
spatial prior and value prior

Advantages

Disadvantages

(1) Direct
inversion

yes

no

no
no

no

no

Knowledge
-driven;
Simple,
easy

Unrealistic;
rely on
simple f(.)

(2) LUT approach

yes

no

no
no

yes?

Yes? Use value prior for
sampling

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Sensitive to
accuracy of f(.),
similarity metrics,
sampling density
and range; slow if
LUT is large; bad for
extrapolation;

(3) Numerical
Approach

yes

Yes, estimate X
and U together

no
no

Yes? Use (X,Y) to
estimate parameters
in f(.)

Yes? Use value prior of
X in Bayesian estimation

Knowledge-driven;
estimate U;
Efficient for simple
f(.) in convex
problems

Rely on efficiency
of nonlinear solver;
Slow; Local
optimum;

(4) Simulation & ML

yes

no

no
no

yes?

Yes, Use value prior in sampling
and spatial prior in Random fields

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;
faster than LUT

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),
similarity metrics, sampling
density and range;

(5) ML

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, spatial prior in
Random field
approaches

Data-driven;
flexible; Classic;

Weak modeling
capability; Rely on
“good” engineered
features; Black-box;
Overfitting, underfitting;
Feature and model
selectionis difficult and
slow

(6) DL

yes

no

yes
no

Yes, use both
simulated and observed
data

Yes, similar to ML

Strong modeling
capability;
automatic feature
learning;

Overfitting and
underfitting; Black-
box;



More on Error and Prior



Remote Sensing System Overview

3 ~ Cloud interactions s""‘ g
Satellite Qv Incident ( )=
Solar Radiation/, ”~ N

P TR

Reflected
Solar Radiation

Grass Bare Soil Paved Road

REFLECTIONS

Area

Forward model:
Y =f(X)
(1) Y: radiation received by the sensor

(2) X: variables that you want to estimate, e.g., class
labels, chlorophyll content in leaves, leaf area
index/density;

Inverse model:

X=g(Y, 6)

where g(.) is an [IEKESME inverse function with [KHGHE

model parameter 6.

Why estimating X is difficult?

--- Knowledge f(.) complex, biased, highly nonlinear,
with large uncertainty;

---- Data (X, Y) pairs limited, poor quality;

---- Prior information (e.g., spatial prior) ambiguous;



How to use prior estimate (e.g., historical estimate) and accommodate errors?

Estimate selected variables driving a physical system (state vector x, dim n) by using:
— the observable manifestations of the system (observation vectory, dim m)
— a physical model y = F(x) (forward model)
— a prior estimate x, before the observations have been made
— Statistics for the errors € in the different components of the problem

Knowledge
General approach:

forward model

y = F(XA) + f:mN
mis

Prior information, e.g., observations
historical data y + & 1

prior estimate
Xp+ Ep

" _ optimal (posterior)
statistical fit of x estimate

atch > N
XtTE

<P

Observational data

observing system



Smocthness Sparsity

Bayesian framework - use “prior” & conditional e mm S
distributions N
Optimize values of an ensemble of variables (sfate vector X) using observations: :::u?:.;:: b Lieihood

a priori estimate “MAP solution” o i?%fm;"

X, +¢, “optimal estimate” ¥
“retrieval” Postoricr Density
; Bayes’ X+ |wmm| | postorcr samgio |
- | forward model theorem
ohservation vector y y=F(x)+¢ P(x) = probability distribution function (pdf) of X
P(x,y) = pdf of (X,y) o = P(X)dXP(¥ | X)d¥
t - X) = pdf of ¥ given X
Poserer | ® PR =patoty aiven P(x,y)dxdy

Probability density

Probabdity density

Wl
™, Likelihood o= PlvidvPix] vdx
 wDi0. 1)
ocbservation pdf a priori pdf
. a posteriori pdf N ——
- P ) N .!:JII }' X }[}{ X } Bayﬂs"
= (x]y)= . theorem
®) P (¥ )
H_"I

normalizing factor (unimportant)

Maximum a posteriori (MAP) solution for X given Y is defined by max( (x| v})
& solvefor \ F(X|v)=0

Parameler space o



A simple linear inverse problem

Optimize estimate of true emission x using a single concentration measurement y;
assume simple linear transport forward model described by y = kx
wind
fDlW'ﬂl‘d IT'IDﬂEl measured
Virue = KX+Ey+Ep concentration y+g

u 3

prior emission X,+€4  error variance o2 — E[g? ]
A &AL expected value

L operator
Instrument error g, ,
Forward model error g, Mode_,l grid Measurement
andtime step  ____location
. / - ®.
Representation error g oot T
y(1) i i M y(t+Ay
Time r’ t+Ar

" N 2 2
Observational error eo = &,+ &y +€r ¥ = kx + &g error variance o, = E[g; ]

Error variances are additive: 0% = 0f + 0, + 05°



How to solve this inverse problem using Bayesian MAP estimation? error distribution assumption?

_ 1 (x=x,)
Prior pdf: P(x)= ex 4
(9= el ]
, 1 (y—hx)’
Observation pdf: P(y|x)=———F+—=¢exp[-————
paf:  P(y|[x) o pl 207 ]
(x _14}2

Posterior pdf: P(x| y)oc P(x)P(y|x) oc exp[- 2 - >
20 20,

2
- X,) (}’ kx) solve dJ/dx = 0

2

. N X
Cost function to minimize: J(x)= (

Jﬁ g{) k ..
A o, :
Posterior solution: x = X, + g(y _kxﬁ) g=—5 4 gain factor
ko + oy,

1 exp[—(x x)z] I .
(}'-\/_ 262 G2 (T1 ((T”J'"k):

posterior error variance
k %
Relationship to truth: a=gr= 2
p ! .x:[ x+(1-a)(x,—x)+ge, o2+ (o, k)
optimal — truth smoothing obs. %
estimate arror error averaging kernel

with posterior pdf  P(x| y) =



How to solve this inverse problem using Bayesian MAP estimation?

Prior pdf: P(x) =

(k)
ooizr g8

(x—x,)" (- h)]
267 20,

Observation pdf: P(y|x)=

Posterior pdf: P(x|y) o P(x)P(y|x) o« exp[—

2 2
Cost function to minimize: J(x)= (x fﬂ’) + O=k)"  solve ddx = 0

2
ﬂ-ﬁ G'G g

ko,

— A . gain factor
ko, + o,
(x— x)2 11 1
expl[-———] —=—+ -
G'«J 26 g 0O, ((T” Hf)

posterior error variance

. A
Relationship to truth: £ = x + (1 —a)(x, —x)+gg, “=& =5 v
A 0 2 2
optimal  tryth  smoothing obs. 04 +(0o k)

estimate arror error averaging kernel

Posterior solution: x = x,+g(y _kxﬁ) g=

with posterior pdf  P(x| y) =




How to solve this inverse problem using Bayesian MAP estimation?

Instead of a single measurement y, make m measurements y = (yy, ...Ym)"

Cost function: _ mean

J()_(I xa) Z(yr kx) (I 'x.-{) (yr )

(y —kx)’

Observational error variance decreases as m (central limit theorem) IF:
* Error is random
+ Individual measurements are not correlated and sample the same pdf

If there is systematic bias in observing system, the bias will propagate to the solution:
y=kx+b,+¢, = Xx=x+(-a)x,—x)+ge,+gb,

bias residual truth smoothing obs. bias
error error error

Removing bias by validation of the observing system is critical!

vs. J="3




How to formulate this inverse problem using vectors?
Use m observations to constrain a n-dimensional state vector

State vector X (dimension n) Observation vector Y (dimension m)

( y \
o 1
I — |
correlations X2 1 ;y

2
between vector 4

elements

\

4
! I
I I
] |
v "
X 41 Individual observations influenced y
\ n/ By multiple state vector elements \ m )




How to formulate error variance matrices and PDFs for the vectors?

Consider vector x with expected value E[x] and error & = (g|,52 , ,,.gn)T

Error covariance matrix S:

var(¢,) ... cov(g,é&,))
S= ' | '

cov(e,e,) - var(e,)

Gaussian error PDF:

[—%(x- 7S (x- )]

P(x) =

> €X
(Zﬂ_)nil [Sr'z p

We will make use of

mP(X)c—(x-[ |)"S"'(x-[ )]




How to formulate error variance matrices and PDFs for the vectors?
Consider vector x with expected value E[x] and error & = (gl,52 , ,,,gn)T

Error covariance matrix S:

var(¢,) ... cov(g,é&,))

S=

cov(e,e,) - var(e,)

Gaussian error PDF:

1 1 :
P(x) = 2" exp[—— (X - E[x])"§™(x - E[x))]

We will make use of

In P(x) < — (x-E[x])” $"(x - E[X])]



How to formulate Bayesian MAP estimation using vectors?

State vector x = (X;,...X,)" Obs vector y=(y,,..y,)’ Forward model y=F(X)

Prior x,

with prior error covariance matrix Su

Observation y
with observational error covariance matrix Sq

l

prior pdf P(x)

In P(x) c (X —X,)" Sa(x-X,)

InP(x|y) o

+InP(y|x)=

Minimize cost function:  J(x) =

|
v

observational pdf Py | x)
InP(y|x) < —(y-F(x))" S, '(y ~F(x))

~(y-F(x))"S, ' (y -F(x))

+(y —F(x)) S5 (y —F(x)

— solve  V, J(X)=2S,(x-X,)+2(V,F) Sq(F(x)-y)=0



How to formulate Bayesian MAP estimation using vectors?

State vector x = (X;,...X,)" Obs vector y=(y,,..y,)’ Forward model y=F(X)

Prior x, Observation y
with prior error covariance matrix S, | | with observational error covariance matrix Sq

' I
prior pdf P(x) observational pdf P(y | x)
In P(x) c (X —X,)" Sa(x-X,) InP(y|x) < —(y-F(x))"S, " (y - F(x))

|

InP(x|y) o< In P(x)+In P(y | X) = ~(x—X,)" Sx(x-X,) ~ (y —F(x)) S5 (y ~F(x))

Minimize cost function:  J(X) = (X=X ,)" Sa(x-X,)+(y—F(x)) S5 (y —F(x))

— solve  V, J(X)=2S,(x-X,)+2(V,F) Sq(F(x)-y)=0



Linear forward model leads to an analytical (closed-form) solution
oy,/ox, ... oy,/ox,
y = F(x) = Kx whereK = : : Is the Jacobian matrix
aym"fax] l5‘-""';711"Ilra‘:'{ﬂ'
Then equation from previous slide becomes
V. J(X) =28, (Xx-X,)+2K'S ] (Kx-y)=0
Solution: X =X, +G(y-Kx,) wih G=5,K'(KS,K'+ S,)"

é = (KTS;K + Si)‘l gain matrix

posterior error covariance matrix
Relate solution to true value:

x =x+(I, — A)(x, — X) +Gg, with A = GK

truth smoothing observational averaging kernel matrix
error error



The importance of the averaging kernel matrix A

A describes the sensitivity of the retrieval to the true state
5)?1 [oXx, ... ﬁi] /OX,,
A=—= ; . :
ox, /8x, --- 0K /10X,
so that I,, — A describes the smoothing of the solution:
x=x+( —A)(x, —x)+Gg,

truth smoothing observational
error error

Analytical inversion gives A as part of the solution:

A=GK= SAKT(KSAKT + Sg)-lK = In - ésa‘:

If A'is very small, it means that the observing
system is not sufficient for constraining the
state vector, meaning that there could be
multiple solutions.

The trace of A gives the # of independent pieces of information in the inversion —

also called the degrees of freedom for signal (DOFS)

| Before making any observations, A can diagnose the utility of an observing system

for constraining the state vector




How to calculate K using nonlinear forward model?

Constructing the Jacobian matrix K of a forward model y = F(x)

oy,/ox, ... oy,/0ox,
K=vF=¥_| : -~
oX
aym fax1 'a-Vm ;5)(” two passes of
__,,f forward model
Jacobian matrix expresses the i |
sensitivity of elementsiny to “ . v
elements in x. oy F(x,+(Ax;,0,..0) )-F(x,)
oX, AX,

Constructing Jacobian matrix requires n + 1 passes of forward model



How to integrate neural network into this framework? Replace x,?

State vector x = (X;,...X,)" Obs vector y=(y,,..y,)’ Forward model y=F(X)

Prior x, Observation y
with prior error covariance matrix S, | | with observational error covariance matrix Sq

l v

prior pdf P(x) observational pdf P(y | x)
InP(x) c (X —X,)" Sa(Xx=-X,) InP(y|x) < —(y-F(x))"S, " (y - F(x))

|

InP(x|y) o< In P(x)+In P(y | X) = ~(x—X,)" Sx(x-X,) ~ (y —F(x)) S5 (y ~F(x))

Minimize cost function:  J(X) = (X=X ,)" Sa(x-X,)+(y—F(x)) S5 (y —F(x))

— solve  V, J(X)=2S,(x-X,)+2(V,F) Sq(F(x)-y)=0



Questions?
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