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Remote Sensing System Overview
Forward model:

Y = f(X)

(1) Y: radiation received by the sensor

(2) X: variables that you want to estimate, e.g., class 

labels, chlorophyll content in leaves, leaf area 

index/density;

Inverse model: 

X = g(Y, θ) 

where g(.) is an unknown inverse function with unknown

model parameter θ. 

Why estimating X is difficult? 

--- Knowledge f(.) complex, biased, highly nonlinear, 

with large uncertainty; 

---- Data (X, Y) pairs limited, poor quality;

---- Prior information (e.g., spatial prior) ambiguous;



Remote Sensing System Overview

Forward model:  Y = f(X)

Inverse model:  X = g(Y, θ) 

What are the approaches for solving the inverse 

problems? Advantages? Disadvantages?

Common approaches for solving inverse model:

1. If f(.) is known and invertible, use direct inverse 

function approach. 

1. If f(.) is known but highly nonlinear, 

2.1  use numerical approaches, e.g., Newton’s 

approach, to estimate X using observations {Y}.

2.2  use the lookup table (LUT) approach to 

simulate {(X,Y)} pairs for estimating {X} of 

observations {Y}.

2.3   simulate {(X,Y)} pairs to train inverse 

function g(.) which will be tested on real 

observations {Y}.

1. If f(.) is unknown, requires (Y, X) pairs, use ML 

and DL, to empirically build g(.). 



(1) Direct Inverse Function Approach

In an ideal scenario, the forward model f(.) is simple and invertible, we can use direct inverse function approach to estimate X. 

Forward model:    Y = f(X)

where f(.) is invertible, f(.) -> f-1(.). For example, 

Forward model:    Y = X2

Inverse function:      X = Y0.5

Given Y, X can be estimated based on the above inverse function. 

However, in real-world remote sensing systems, the forward model f(.) are complicated radiative transfer models, which are usually 

highly nonlinear and non-invertible, and as such they do not have inverse functions. 

Questions: Can this approach use data (X,Y) pairs, and spatial prior information?



c2/λT

Planck’s Law B(λ,T)  =  c1 / λ
5 / [e               - 1]     (W/m2/ster/um)

where λ =  wavelengths in um

T = temperature of emitting surface (deg K)

c1 = 1.191044 x 10-5 (mW/m2/ster/cm-4)

c2 = 1.438769 (cm deg K)

Brightness Temperature

c 1
T  =  c2 / [λ ln( _____ + 1)]  is determined by inverting Planck function.

λ5Bλ



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both simulated 

and observed data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledg
e-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; automatic 
feature learning;

Disadvantages Unrealisti
c; rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(2) Numerical Approaches

If the radiative transfer model f(.) is known, and we have an remote sensing observation Y, we can use the numerical 

approach to estimate the associated X.

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and un-invertible. 

Based on some observations {Y}, we can build an objective function:

J(X) = Y-f(X)

X = min J(X)

We try to find X that through f(.) can generate output whose value is very close to the value of Y. 

There are many methods that can solve this nonlinear optimization problems, for example,

---- Newton’s method

---- Gradient descent methods

---- Simulated annealing approach

Because the forward model f(.) contains knowledge and physical rules, this approach is usually called physical model. 

Questions: How to find X that can minimize J(X)? Try different X and see which one gives you smallest J(X)? Better approach? 



Root-finding Algorithm: Newton’s Method

Start with initial guess, and 

iteratively improve it using its 
tangent. 

The function f is shown in blue and 
the tangent line is in red. 

We see that xn + 1 is a better 

approximation than xn for the root x
of the function f.

The assumption is the x-intercept will 

typically be a better approximation to the 

original function's root than the previous 
guess, and the method can be iterated. From wikipedia.org

https://en.wikipedia.org/wiki/Iterative_method


Gradient Descent 

Start with initial guess, and iteratively 

improve it using its gradient. 

Q1: What if there are multiple local minimums 

for complex f(.)?  

Q2: What are roles of starting point and step 

length? 



Local Minima

A more realistic scenario 
where there are many 
local minima;

Different initializations 
lead to different local 
minima; 

How do you find global 
minima?

From https://ml4a.github.io



Bayesian framework - how to use “prior” information and 

accommodate errors? 



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both simulated 

and observed data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior 

of X in Bayesian 

est imation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-
driven; estimate 
U; Efficient for 

simple f(.) in 
convex problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; automatic 
feature learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear 
solver; Slow; 

Local optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



Prosail Simulation - how to simulate data? 
Prosail is a forward model:

Y = f(X)

What is Y?

1. Bidirectional reflectance from canopy (400nm -

2500nm);

What are the factors that constitute X:

1. A total of 14 input parameters;

How to simulate Y using X?

Step 1: know the distribution of X;

Step 2: obtain samples {Xi| i=1,..,N} based on the 

distribution of X;

Step 3: use  {Xi| i=1,..,N} as input to Prosail and 

generate {Yi| i=1,2,...,N}



(3) LookUp Table (LUT) Approaches

If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(Xj,Yj) | j=1,2,...,M}, based on 

which we can build a LUT and use it to estimate the X value of an observed Y value. 

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invertible. 

Based on Y=f(X), we build a LUT by first sampling Xj uniformly within a range [A,B] (A and B are respectively the theoretical min and 

max value of X), and then obtaining the associated Yj value by Yj=f(Xj). 

X1   :          Y1

X2   :          Y2

X3   :          Y3

….

Xn   :          Yn

Given an observed Y value, how do we estimate its X value using LUT? First, we search the LUT to identify the row whose Y j value is 

the closest to the observed Y value. Then, the Xj value associated with Yj is treated as the estimated X value of Y. 

Comparing with the numerical approaches, the LUT approach is simpler and has theoretical advantages such as being able to find the 

global optimum in the parameter space, and thereby the LUT approaches have been widely used in solving remote sensing inverse

problems. 



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both simulated 

and observed data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior 

for sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; automatic 
feature learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad 
for extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(4) Data Simulation & Machine Learning (ML) Approaches
If the radiative transfer model f(.) is known, we can simulate a collection of X and Y pairs, i.e., {(X j,Yj) | j=1,2,...,M}. Instead of using LUT for 

data inversion, we can use ML approaches to learn the inverse function, i.e., X=g(Y), and use this inverse function to estima te the X value 

of an observed Y value. 

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and not invertible. 

Based on Y=f(X), similar to LUT, we simulate the following X and Y pairs. 

X1   :          Y1

X2   :          Y2

X3   :          Y3

….

X4   :          Y4

Based on simulated {(Xj,Yj) | j=1,2,...,M} pairs, 

we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in the inverse function g(.) which is a statistical model or machine learning model. Once w e know θ, we can 

establish the inverse function g(.), and use it to estimate the X value of an observed Y value by X=g(Y). 

Comparing with the LUT approach that is essentially discrete interpolation, the ML approaches can learn a continuous inverse function g(.) using the 

simulated data, and thereby they theoretically can achieve more accurate estimation. Moreover, ML approaches tend to be faste r because they do 

not need to do LUT searching for every observation. 



LUT vs. Machine leaning



True inverse function vs. approximated inverse function

Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function: 

X = t(Y) = f-1(Y)

where  f-1(.) is difficult to get and 

the form of t(.) is usually unknown;  

Approximated inverse function:

X = g(Y) 

Note that g(.) is only an approximation to the true inverse function t(.)

Appropriate fitting: when the complexity of g(.) is close to t(.);

Overfitting: when the complexity of g(.) is larger than t(.);

Underfitting: when the complexity of g(.) is smaller than t(.);

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following 

objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)



c2/λT

Planck’s Law B(λ,T)  =  c1 / λ
5 / [e               - 1]     (W/m2/ster/um)

where λ =  wavelengths in um

T = temperature of emitting surface (deg K)

c1 = 1.191044 x 10-5 (mW/m2/ster/cm-4)

c2 = 1.438769 (cm deg K)

Brightness Temperature

c 1
T  =  c2 / [λ ln( _____ + 1)]  is determined by inverting Planck function.

λ5Bλ

What happens if you fit the BT function using 
a million-layers neural network? 



How do you select the “best” g(.)?

Try different models, g1(.), g2(.), …, gn(2), and select the one that with 
highest accuracy on the validation set. 



Overfitting vs. Underfitting

Overfitting: 

---- ML model is so flexible and complex that it accommodates the noise effect in the training data 
and treats it as signal, and the learnt noise characteristics cannot generalize well to the test data;

---- very high training accuracy but low validation/test accuracy;

Underfitting: 

---- ML model is so simple and rigid that it does not has enough capacity to accommodate signal in 
the training data, and the learnt biased/partial information cannot generalize well to the test data;

---- low training accuracy & low validation/test accuracy;



Training error vs. test error as model complexity 
changes



What are Bias and Variance? Why overfitting means small bias and big variance?

Bias is the difference between the average prediction of our model and the true value which we are 

trying to predict.

Variance is the variability of model prediction.

Why increasing model complexity lead to small bias in prediction? 

---- increasing model complexity -> g(.) to be universal approximator -> stronger 
accommodating/modeling capability to learn the genuine nonlinear relationship between X and Y in 
X = t(Y) -> less bias;

Why increasing model complexity lead to larger variance in prediction? 

---- increasing model complexity -> g(.) to be universal approximator -> stronger 
accommodating/modeling capability to learn both the genuine nonlinear relationship between X and 
Y and irrelevant factors (i.e., noise and even errors in the data) -> larger variance;

Why decreasing model complexity lead to larger bias in prediction? 

Why increasing model complexity lead to smaller variance in prediction? 



Overfitting vs. Underfitting

Overfitting: 

---- ML model is so flexible and complex that it accommodates the noise effect in the training data and treats 
it as signal, and the learnt noise characteristics cannot generalize well to the test data;

---- very high training accuracy but low validation/test accuracy; small Bias but big variation in prediction;

Underfitting: 

---- ML model is so simple and rigid that it does not has enough capacity to accommodate signal in the 
training data, and the learnt biased/parcial information cannot generalize well to the test data;

---- low training accuracy & low validation/test accuracy; big Bias but small variation in prediction;



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both simulated 

and observed data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in 

sampling and spatial prior in 

Random fields

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous 
fitting; good 

inter/extrapolation; 
faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; automatic 
feature learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and 
underfitting risk to 
simulated data; difficult 

model selection; Sensitive 

to accuracy of f(.), similarity 

metrics, sampling density and 

range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(5) Machine Learning (ML) Approaches

If f(.) is unknown, we resort to data for solving inverse problems. We need to collect X and Y measurements, i.e., {(X j,Yj) | j=1,2,...,T}, based 

on which we establish the inverse function X=g(Y,θ), where g(.) is a statistical or ML model (empirical models). 

No f(X)

We need to measure Y 

and the associated ground truth data X to get some (X,Y) pairs, 

to train ML model. 

X1   :          Y1

X2   :          Y2

X3   :          Y3

….

X4   :          Y4

Based on {(Xj,Yj) | j=1,2,...,T}, we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in g(.). Once we know θ, we can establish the inverse function g(.), and use it to estimate the X value of an 

observed Y value by X=g(Y). 

Limitations of ML approaches, when X and Y have highly-nonlinear relationship? Why feature extraction and selection? Why not using original 

features?  



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and 

observed data

Yes, use both simulated 

and observed data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; automatic 
feature learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overf itt ing, 

underfitting; Feature 

and model  select ion is 

dif ficult and slow

Overfitting and  
underfitting; Black-
box; 



(6) Deep Learning (DL) Approaches

Deep learning (DL) approaches are also ML approaches, and as such they can be used for data inversion through (4) and (5), i. e.,

--- if f(.) is known, we simulate {(Xj,Yj) | j=1,2,...,T} using f(.) and use them to train DL models for obtaining the inverse function X=g(Y);

--- if f(.) is unknown, we obtain remote sensing data Y and ground truth data X to build X and Y pairs, i.e., {(Xj,Yj) | j=1,2,...,T}, and use them 

to train DL models for obtaining the inverse function X=g(Y);

Based on training data, we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in DL model g(.). Once we know θ, we can establish the inverse function g(.), and use it to estimate the X value 

of an observed Y value by X=g(Y). 

Comparing with traditional ML approaches, such as SVM and random forest, the DL approaches, due to their strong modeling capability and GPU 

computation, are more capable of effectively and efficiently learning the complex nonlinear relationship between Y and X,  and perform accurate and 

fast model prediction for estimating X. 



When DL is better than ML? 

Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function: 

X = t(Y) = f-1(Y)

where  f-1(.) is difficult to get and 

the form of t(.) is usually unknown;  

Approximated inverse function:

X = g(Y) 

Note that g(.) is only an approximation to the true inverse function t(.)

Appropriate fitting: when the complexity of g(.) is close to t(.);

Overfitting: when the complexity of g(.) is larger than t(.);

Underfitting: when the complexity of g(.) is smaller than t(.);

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following 

objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)



Feature-driven machine learning vs. Data-driven deep 
learning (DL)

Advantages of DL approaches for RS image classification:

(1) automatically learn the “best” feature without requiring task-specific classifier-specific knowledge;

(2) End-to-end approach without any intermediate stages in the data-processing pipeline;

(3) Complex model -> strong modeling capability -> efficiently capture the subtle differences among classes;

(4) Powerful GPU computation  



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



More on Error and Prior



Remote Sensing System Overview
Forward model:

Y = f(X)

(1) Y: radiation received by the sensor

(2) X: variables that you want to estimate, e.g., class 

labels, chlorophyll content in leaves, leaf area 

index/density;

Inverse model: 

X = g(Y, θ) 

where g(.) is an unknown inverse function with unknown

model parameter θ. 

Why estimating X is difficult? 

--- Knowledge f(.) complex, biased, highly nonlinear, 

with large uncertainty; 

---- Data (X, Y) pairs limited, poor quality;

---- Prior information (e.g., spatial prior) ambiguous;



How to use prior estimate (e.g., historical estimate) and accommodate errors? 

Prior information, e.g., 

historical data

Knowledge

Observational data



Bayesian framework - use “prior” & conditional 

distributions



A simple linear inverse problem



How to solve this inverse problem using Bayesian MAP estimation?  error distribution assumption? 



How to solve this inverse problem using Bayesian MAP estimation?  



How to solve this inverse problem using Bayesian MAP estimation?  

vs.



How to formulate this inverse problem using vectors? 



How to formulate error variance matrices and PDFs for the vectors? 



How to formulate error variance matrices and PDFs for the vectors? 



How to formulate Bayesian MAP estimation using vectors? 



How to formulate Bayesian MAP estimation using vectors? 



Linear forward model leads to an analytical (closed-form) solution  



The importance of the averaging kernel matrix A  

If A is very small, it means that the observing 

system is not sufficient for constraining the 
state vector, meaning that there could be 

multiple solutions. 



How to calculate K using nonlinear forward model?  

Jacobian matrix expresses the 

sensitivity of elements in y to 

elements in x. 



How to integrate neural network into this framework? Replace xA?



Questions?
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